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Motivation
What is the optimal transport?

Why we care about it?
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Optimal Transport                                                                                                                    
Motivation

The Optimal Transport theory focuses on finding the optimal 
mapping between different probability measures. 

Discrete Measure
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Formulation

Example
Considering many mines and factories 
with different scales, how to find the 
transport map with the lowest 
transportation cost?
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Optimal Transport                                                                                                                    
Motivation

The Optimal Transport theory focuses on finding the optimal 
mapping between different probability measures. 

Continuous Measure

���
�

   
�

�(�, �(�)) ��(�)  �#� = � 

Formulation

Example
Given two piles of sand,

how to find a minimum cost transportation 
(optimal transport map) ?

�
� �

4



Various Measures in Optimal Transport                                                                                                                    
Motivation

Cells as measures Images as measures

Shapes as measures Particles as measures
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Various Applications in Optimal Transport                                                                                                                    
Motivation

Image Domain Transformation

Shape Interpolation

Medicine and Biology

Particle Interpolation

Deep Generative Model

6



Outline

Motivation
Foundamental topics in Optimal Transport

- Monge Problem and Kantorovich Relaxation
- Wasserstein Distance and Brenier Theorem
- Kantorovich Duality Theory and C-transform
- Semi-dual Formulation and Gangbo-McCann Theorem
- Entropy Regularization and Sinkhorn Algorithm
- Extensions of OT

Advanced topics in Optimal Transport
- The Riemannian Structure of Optimal Transport 
- Wasserstein Gradient Flow and JKO Scheme
- Introduction to the Schrödinger Bridge Problem
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Foundamental topics in Optimal Transport
- Monge Problem and Kantorovich Relaxation
- Wasserstein Distance and Brenier Theorem
- Kantorovich Duality Theory and C-transform

- Semi-dual Formulation and Gangbo-McCann Theorem
- Entropy Regularization and Sinkhorn Algorithm 

- Extensions of OT 8



Outline Story                                                                                                                     
Foundamental topics in Optimal Transport

Monge Problem and Kantorovich Relaxation

Wasserstein Distance and Brenier Theorem

Kantorovich Duality Theory and C-transform

Semi-dual Formulation and Gangbo-McCann Theorem

Entropy Regularization and Sinkhorn Algorithm 

Extensions of OT

We will introduce the basic and relaxed formulation of OT.

Based on which, the wasserstein distance will be introduced and the 
Brenier Theorem gives us the tight relaxation.

We will introduce the duality formulation of OT.

We will introduce the semi-dual formulation of OT.

We will introduce the most important regularization and algorithm.
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Prerequisite - Probability Measure ℳ+
1                                                                                                                      

Foundamental topics in Optimal Transport

Discrete Probabilistic Measure

Definition (informal): A discrete probabilistic measure � ∈ ℳ+
1 (�) is a 

collection of weighted discrete points:

� =  
�=1

�

�����             �. �.  �� > 0, 
�=1

�

�� = 1

where �� is a Dirac function at position �. The integration of continuous 
function � ∈ �(�) against a discrete probabilistic measure computes a sum

 
�

�(�) ��(�) =  
�=1

�

���(��)
Example

Remark.
1. in the rest of talk, we will denote the probabilistic measure as 
ℳ+

1 (�) and continuous function family as �(�).
2. In practice, � ∈ ℳ+

1 (�) is just an abstract symbol, we can use 
vector � and tuple  �� �=1

�  to represent this probabilistic measure.
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General Probabilistic Measure

Definition (formal): In mathematics, a probability measure is a real-valued 
function defined on a set of events in a σ-algebra that satisfies measure 
properties such as countable additivity. -- Wikipedia

Definition (informal): Probability measure can be viewed as representing 
the distribution of random variables. A random variable � on � is actually a 
map �:  � → � from some abstract probability space (�, ℙ) to the space � 
(e.g. ℝ�). Its distribution � is the probability measure � ∈ ℳ+

1 (�) such that:

ℙ(� ∈ �) = �(�) =  
�

��(�)

and

ℙ(� ∈ �) = �(�) =  
�

��(�) = 1.

Prerequisite - Probability Measure ℳ+
1                                                                                                                      

Foundamental topics in Optimal Transport

Example

Remark.
1. in the rest of talk, we will use 

 ℝ� ℎ(�) ��(�) to denote the integration 
over some probability measure (distribution).
2. this formulation can also represent the 
discrete probabilistic measure.

If the probability measure � have a density ��(�) = ���� with respect to 
the Lebesgue measure on � = ℝ�,  then for any continuous function ℎ ∈
�(ℝ�), we have

 
ℝ�

ℎ(�) ��(�) =  
ℝ�

ℎ(�) ��(�)�� .
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Definition: For a continuous map �: � → �, we can define the corresponding push-
forward operator �#: ℳ+

1 (�) → ℳ+
1 (�) and the push-forward measure � = �#� ∈

ℳ+
1 (�) of some � ∈ ℳ+

1 (�).

For discrete measure � = �#� =  �=1
� ����(��)

Prerequisite - Pushforward (Discrete Measure Version)                                                                                                                    
Foundamental topics in Optimal Transport

Push-forward operator and measure

“�# moving the position 
of all the points and 
weights in the support 
of the measure”
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Definition: For a continuous map �: � → �, we can define the corresponding push-
forward operator �#: ℳ+

1 (�) → ℳ+
1 (�) and the push-forward measure � = �#� ∈

ℳ+
1 (�) of some � ∈ ℳ+

1 (�).

Prerequisite - Pushforward (Arbitrary Measure Version)                                                                                                                    
Foundamental topics in Optimal Transport

Push-forward operator and measure

  � =  �(�, �)    � = �#� =  �(�, �)

�(�) = 2� + 3

For arbitrary measure, the map �: � → � must satisfies

∀ℎ ∈ �(�),  
�

ℎ(�) ��(�) =  
�

ℎ(�(�)) ��(�)

Equivalently, for any measurable set � ⊂ �, one has
�(�) = �( � ∈ �:  �(�) ∈ � ) = �(�−1(�))

Remark.
1. �# preserves positivity and total mass
2. push-forward can be seen as a kind of mapping 
(like function)
3. push-forward operator is “linear” 
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Prerequisite - Pushforward (Arbitrary Measure Version)                                                                                                                   
Foundamental topics in Optimal Transport

Push-forward for multivariate densities

Explicitly doing the push-forward � for measures with 
densities (��, ��) on ℝ� (assuming is smooth and bijective) 
shows that a push-forward � acts on densities linearly as a 
change of variables in the integration formula. 

��(�) =  ���(�’(�))  ��(�(�))
where �’(�) ∈ ℝ�×� is the Jacobian matrix of �.  This is 
similar to the change of variable theorem in integration.

Identity Map as push-forward

Similar to the identity matrix, we can also define the 
identity map as ��:  ��#� = �.
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Monge Problem and Kantorovich Relaxation (Discrete Measure Version)                                                                                                                    
Foundamental topics in Optimal Transport

Monge Problem between measures

Definition: Given the discrete measures � =  �=1
� ����� and � =  �=1

� �����

the Monge problem seeks a map �:  �1, . . . , �� →  �1, . . . , ��  which minimizes

min
�

  
�

�(��, �(��))  �#� = � ,

where � is the ground cost (e.g. � = (�� − �(��))2) and �#� = � can be understanded as

∀� ∈  � , �� =  
�:�(��)=��

��

�1

�2

�1 �2
�4

�1
�2

�3

�1
�2

�3

�4
�5

Example

The Monge map may 
not be unique.

The Monge map 
may not exist.

Remark.
1. Monge Problem’s uniqueness and existence is 
not guaranteed (push forward operator dosen’t 
allow mass splitting)
2. Monge Problem is a combinatorical problem 
and is non-convex

Can we make this problem easier to be solved?
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Monge Problem and Kantorovich Relaxation (Discrete Measure Version)                                                                                                                    
Foundamental topics in Optimal Transport

Definition: Given the discrete measures � =  �=1
� ����� and � =  �=1

� �����

the Kantorovich Relaxation problem seeks a plan(coupling) π =  �,� ��,��(��,��) 
which minimizes

ℒ�(�, �) ≝ min
�∈�(�,�)

 �, � ≝  
�,�

��,���,�

where
�(�, �) ≝   � ∈ ℝ+

�×�   ��� = � and ���� = � 

Kantorovich Relaxation Problem between measures

Remarks.
1. Kantorovich Relaxation allows mass spliting
2. The coupling exists under mild condition and is unique if it 
is strongly convex
3. Monge map is a special type of coupling � = (�� × �(∙)) 
4. Kantorovich Relaxation is a convex constrainted problem

�4

�1
�2

�3

�1
�2

�3

�4

Monge Problem

�3

�2

�4

�1

�1

�2

�3
�4
�5

�7

Kantorovich Relaxation

�6

Example
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Monge Problem and Kantorovich Relaxation (Arbitrary Measure Version)                                                                                                                    
Foundamental topics in Optimal Transport

Monge Problem between arbitary measures

Definition: Given the measures � ∈ ℳ+
1 (�) and � ∈ ℳ+

1 (�), 
and the ground cost �: (� × �) → ℝ, the Monge problem 
seeks a map �: � → � which minimizes

min
�

   
�

�(�, �(�)) ��(�)  �#� = � 

Kantorovich Relaxation between arbitary measures

ℒ�(�, �) ≝ min
π∈�(�,�)

  
�×�

�(�, �) �π(�, �) ,

Definition: Given the measures � ∈ ℳ+
1 (�) and � ∈ ℳ+

1 (�), the 
Kantorovich Relaxation problem seeks a plan(coupling) π ∈ �(�, �) 
which minimizes

where
�(�, �) ≝   π ∈ ℳ+

1 (� × �)   ��#π = � and ��#π = � 

Here, ��# and ��# are the push-forwards of the projections 
��(�, �) = � and ��(�, �) = � respectively.

Example

Can we define ℒ�(�, �) as a distance 
between distributions?
-> Wasserstein Distance
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Outline Overview                                                                                                                    
Foundamental topics in Optimal Transport

Monge Problem
min

�
   

�
�(�, �(�)) ��(�)  �#� = � 

Kantorovich Relaxation
min

π∈�(�,�)
  

�×�
�(�, �) �π(�, �) 

�(�, �) ≝   π ∈ ℳ+
1 (� × �)   ��#π = � and ��#π = � 

Kantorovich Relaxation
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Wasserstein Distance and Brenier Theorem                                                                                                                    
Foundamental topics in Optimal Transport

Wasserstein Distance

��(�, �) ≝  min
π∈�(�,�)

 
�×�

�(�, �)� �π(�, �) 
1/�

We assume � = � and �(∙ , ∙) is a distance on �, i.e. 
1)�(�, �) = �(�, �) ≥ 0;   
2)�(�, �) = 0 if and only if � = �;   
3) ∀(�, �, �) ∈ �3, �(�, �) ≤ �(�, �) + �(�, �)  

Then, the wasserstein distance between measures can be defined as

Remarks.
1. ��(�, �) can be proved to satisfy the distance property.
2. ��(�, �) can be defined on arbitrary measures 
(discrete-discrete, discrete-continuous, continuous-
continuous)

If � = 2, we can get some interesting properties
->  Brenier Theorem
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Wasserstein Distance and Brenier Theorem                                                                                                                    
Foundamental topics in Optimal Transport

Brenier Theorem

Definition: In the case � = � = ℝ� and �(�, �) =  � − � 2, and at least 
one of the two input measures has a density with respect to the 
Lebesgue measure, then the optimal plan(coupling) π ∈ �(�, �) is 
unique and we can express the plan as π = (��, �)#�, i.e.

∀ℎ ∈ �(� × �),     
�×�

ℎ(�, �)�π(x, y) =  
�

ℎ(�, �(�)) ��(x)

Furthermore, this map � is uniquely defined as the gradient of a convex 
function �(�) = ��(�), where � is the unique convex function such 
that (��)#� = �. 

Remark. according to the monotonicity of 
the gradient of a convex function � i.e.
 � − �, �’(�) − �’(�)  ≥  0,      ∀�, � ∈ ℝ�

if � = 1

� �

Benefit.
1. Brenier theorem guarantees to produce unique 
optimal plan (relaxation is tight).
2. Brenier theorem shows that �(�) = ��(�), we can 
parameterize this plan easily throuth deep network (e.g. 
ICNN).

It seems that we have not guarantee the push 
forward property (mass preserving).
 -> Monge-Ampere equation
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Wasserstein Distance and Brenier Theorem                                                                                                                    
Foundamental topics in Optimal Transport

Monge-Ampere equation

Definition: For measures with densities, one obtains that � 
is the unique convex function which solves the following 
Monge-Ampere equation:

���(�2�(�)) ��(��(�)) = ��(�)
where �2�(�) is the Hessian of �.

Proof.
Recall the push forward opterator � = �#� for measures 
with density

��(�) =  ���(�’(�))  ��(�(�))
Combining it with the Brenier Theorem (��)#� = �.

∎

Benefit.
1. The Brenier Theorem guarantees the 
uniqueness and exsistence. 
2. The ��(�) =  ���(�’(�))  ��(�(�)) guarantees 
the push forward property. 
3. The final equation is a PDE.
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Wasserstein Distance and Brenier Theorem                                                                                                                    
Foundamental topics in Optimal Transport

Wasserstein Geodesic
(McCann’s Interpolation)
(Displacement Interpolation)

Definition: In the case where there exists an optimal transport map 
�: � → � with �#�0 = �1, then we can interpolate the intermediate 
probabilistic measure �� through the McCann’s interpolation:

�� = ((1 − �)�� + ��)#�0,   � ∈ [0,1]

Example

Remarks.
We will see in the next section that, this 
interpolation path is actually a geodesic 
path of the Riemannian structure of the 
Wasserstein space (�2(ℝ�),�2).
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Wasserstein Distance and Brenier Theorem                                                                                                                    
Foundamental topics in Optimal Transport

Wasserstein Barycenters

Example of 2D Gaussian

Definition: Given a set of input measure (��)[1, �] defined on 
some space �, the barycenter problem can be defined as:

min
�∈ℳ+

1 (�)
 
�=1

�

����(�, ��) 

Example of shape

Remarks.
The barycenter problem can be seen as a 
generazed version of displacement interpolation.
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Prerequisite - Linear Programming                                                                                                                    
Foundamental topics in Optimal Transport

�� = �
� ≥ 0

�

�∗

Primal Linear Programming

min
�∈ℝ�

 �, � 
�. �.    �� = �
        � ≥ 0

Dual Linear Programming

max
�∈ℝ�

 �, � 

�. �.    � − ��� ≥ 0

� − ��� ≥ 0

�

�∗

Proof.
The primal problem can be reimplemented as

min
�∈ℝ�  max

�∈ℝ�,�∈ℝ+
�
 �, � +  �� − �, � +  �, − � 

≥ max
�∈ℝ�,�∈ℝ+

�  min
�∈ℝ�

 �, � +  �� − �, � +  �, − � 

= max
�∈ℝ�,�∈ℝ+

�  min
�∈ℝ�

 � + ��� − �, � −  �, � 

notice that
min
�∈ℝ�

 � + ��� − �, � −  �, � 

=  −  �, �    �� � + ��� − � = 0 
−∞   ��ℎ������

then max
�∈ℝ�,�∈ℝ+

�  min
�∈ℝ�

 � + ��� − �, � −  �, �   ⟹ 

max
�∈ℝ�

 �, � 

�. �.    � − ��� = � ≥ 0
where � =− �.

∎
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Prerequisite - Linear Programming                                                                                                                    
Foundamental topics in Optimal Transport

Primal Linear Programming

min
�∈ℝ�

 �, � 
�. �.    �� = �
        � ≥ 0

Dual Linear Programming

max
�∈ℝ�

 �, � 

�. �.    � − ��� ≥ 0

Strong Duality in Linear Programming i.e.  �, �∗ =  �, �∗  .
1. If one of problems is feasible, then strong duality holds.
2. If one of problems achieve finite optimal solution, then strong 
duality holds.
3. A primal feasible point �∗ is an optimal solution if and only if 
there exists a dual feasible point �∗ such that  �, �∗ =  �, �∗  

Weak Duality 
For any pair of feasible primal variable � and dual 
variable �, we have

 �, � ≥  �, � 
Proof.

 �, � −  �, � 
=  �, � −  ��, � 
=  �, � −  ���, � 
=  � − ���, � ≥ 0

∎

Complementary Slackness
If strong duality holds, we can get the complementary slackness. 

��
∗(� − ���∗)� = 0, ∀�

Proof.
Just substitute the optimal variable into the last equation in the 
weak duality proof  � − ���, � = 0.

∎

Remark.
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Kantorovich Duality Theory and C-transform (Discrete Measure Version)                                                                                                                    
Foundamental topics in Optimal Transport

Kantorovich Duality Theory
Definition: Given the discrete measures � =  �=1

� ����� and � =  �=1
� �����

the Kantorovich duality problem seeks two dual variables � ∈ ℝ� and � ∈ ℝ� 
which maximizes

ℒ�(�, �) ≝ max
(�,�)∈�(�)

 �, � +  �, � 

where the set of admissible dual variables is
�(�) ≝   (�, �) ∈ ℝ� × ℝ�    ∀(�, �) ∈  � ×  � , �� + �� ≤ ��� 

Proof.
Recall the Kantorovich relaxation problem

ℒ�(�, �) ≝ min
�∈�(�,�)

 �, � 

�(�, �) ≝   � ∈ ℝ+
�×�   ��� = � and ���� = � 

The lagangian function of Kantorovich relaxation problem is
ℒ(�, �, �) =  �, � +  � − ���, � +  � − ����, � 

Then the lagangian dual problem defines as
max

(�,�)∈ℝ�×ℝ� min
�∈ℝ+

�×�ℒ(�, �, �)

max
(�,�)∈ℝ�×ℝ�  �, � +  �, � + min

�∈ℝ+
�×�

 � − ���
� − ����, � 

only when (�, �) ∈ �(�), min
�∈ℝ+

�×�
 � − ���

� − ����, �  has finite value 0.

∎

Remark. 
1. If this problem has feasible solution and 
bounded below, then the strong duality holds.
2. The complementary slackness describes the 
relationship between the optimal primal and 
dual variables.

���
∗ (��� − ��

∗ + ��
∗) = 0
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Kantorovich Duality Theory and C-transform (Arbitrary Measure Version)                                                                                                                    
Foundamental topics in Optimal Transport

Kantorovich Duality Theory

Definition: Given the measures � ∈ ℳ+
1 (�) and � ∈ ℳ+

1 (�), the 
Kantorovich duality problem seeks two dual potentials � ∈ �(�) 
and � ∈ �(�)

ℒ�(�, �) ≝ sup
(�,�)∈ℛ(c)

 
�

�(�) ��(�) +  
�

�(�) ��(�)

where the set of admissible dual potentials is
ℛ(c) ≝  (�, �) ∈ �(�) × �(�)   ∀(�, �), �(�) + �(�) ≤ �(�, �) 

Benefit.
1. Compared to the primal Kantorovich 
relaxation problem, the optimized variables in 
the dual problem have much smaller size.
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Kantorovich Duality Theory and C-transform (Arbitrary Measure Version)                                                                                                                    
Foundamental topics in Optimal Transport

c-transform

Definition: Given the a function � ∈ �(�) and ground cost function 
�: (� × �) → ℝ, the �-transforms are defined as:

∀y ∈ �,   ��(�): = inf
�∈�

�(�, �) − �(�)
for � ∈ �(�), we can also define the corresponding �-transform

∀x ∈ �,   ��(�): = inf
�∈�

�(�, �) − �(�)

Remark. 
1. c-transform can be seen as a 
generalization of the famous Legendre 
transform (convex conjugate).

This c-transform gives us the best function when fixing another function, which shows that

 
�

� �� +  
�

� �� ≤  
�

� �� +  
�

�� �� ≤  
�

��� �� +  
�

�� �� =  
�

��� �� +  
�

���� ��

Remark. 
1. similar to the Legendre transform, we have �� = ���� which shows that this “alternative minimization” 
can not converge.

There are constraints between theses two dual potentials which may 
be hard to optimize. Can we use this c-transform to reduce constraints?
-> Semi-dual formulation
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Overview                                                                                                                    
Foundamental topics in Optimal Transport

Monge Problem
min

�
   

�
�(�, �(�)) ��(�)  �#� = � 

Kantorovich Relaxation
min

π∈�(�,�)
  

�×�
�(�, �) �π(�, �) 

�(�, �) ≝   π ∈ ℳ+
1 (� × �)   ��#π = � and ��#π = � 

Kantorovich Duality 
ℒ�(�, �) ≝ sup

(�,�)∈ℛ(c)
 

�
�(�) ��(�) +  

�
�(�) ��(�)

ℛ(c) ≝  (�, �) ∈ �(�) × �(�)   ∀(�, �), �(�) + �(�) ≤ �(�, �) 

Kantorovich Relaxation

Langrange Duality

29



Semi-dual Formulation and Gangbo-McCann Theorem                                                                                                                    
Foundamental topics in Optimal Transport

Semi-dual Formulation

Definition: Given the measures � ∈ ℳ+
1 (�) and � ∈ ℳ+

1 (�), the 
Semi-dual formulation seeks a dual potential which maximise

ℒ�(�, �) ≝sup 
�

�(�) ��(�) +  
�

��(�) ��(�)

where ��(�) is the c-transform defined as
∀y ∈ �,   ��(�): = inf

�∈�
�(�, �) − �(�)

Remark. 
1. �∗ is necessarily �-concave, where � is 
a �-concave function if exists � ∈ �(�) 
s.t. � = ��.

Benefit.
This formulation transforms the constraints of two 
functions � and � into an implicit optimization 
problem. This formulation greatly simplifies the 
complexity of the problem, and we will see many 
theories based on this formulation.
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Semi-dual Formulation and Gangbo-McCann Theorem                                                                                                                    
Foundamental topics in Optimal Transport

Gangbo-McCann Theorem

Definition: Given the ground cost �: (� × �) → ℝ, the relationship 
between the optimal transport map �∗: � → � and the optimal dual 
potential �∗ is given by the expression

�∗(�) = ���(�, ∙)−1 ∘ ��∗(�)

Proof.
According to the complementary slackness property, a point (�0, �0) in the 
support of the coupling,  necessarily has such property:

�∗(�0, �0) > 0 ⟺  �∗(�0) + �∗(�0) = �(�0, �0)
Replacing � by the c-transform of �, we have

��∗(�0) = �(�0, �0) − �∗(�0)
By definition of the c-transfrom, ��∗ is given by

��∗(�0) = inf
�∈�

�(�, �0) − �∗(�)
this shows that �0 is the minimizer of �(�0, �0) − �∗(�0), then according 
the first order optimality condition

��(�(�0, �0) − �∗(�0)) = 0  ⟹   ���(�0, �0) = ���∗(�0)
Then after inversion, we have �0 = �∗(�0) = ���(�0, ∙)−1 ∘ ��∗(�0)

∎
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Gangbo-McCann Theorem given �(�, �) = 1
2
 � − � 2

2

Semi-dual Formulation and Gangbo-McCann Theorem                                                                                                                    
Foundamental topics in Optimal Transport

Definition: Given the ground cost �(�, �) =  � − � 2
2, the relationship 

between the optimal transport map �∗: � → � and the optimal dual 
potential �∗ is given by the expression

�∗(�) = � − ��∗(�)

Proof.
Recall the optimality condition and ��(

1
2
 � − � 2

2) = � − �
  ���(�0, �0) = ���∗(�0)

�0 − �0 = ���∗(�0)
�0 = �0 − ���∗(�0)

∎

Remark. 
This theorem implicitly prove the Brenier theorem. 
Proof.

�∗(�) = � − ��∗(�) = �  
1
2

 � 2
2 − �∗(�) (�) = ��(�)

∎
where �(�) is a convex function (− �∗(�) is convex).
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Outline Overview                                                                                                                    
Foundamental topics in Optimal Transport

Monge Problem
min

�
   

�
�(�, �(�)) ��(�)  �#� = � 

Kantorovich Relaxation
min

π∈�(�,�)
  

�×�
�(�, �) �π(�, �) 

�(�, �) ≝   π ∈ ℳ+
1 (� × �)   ��#π = � and ��#π = � 

Kantorovich Duality 
ℒ�(�, �) ≝ sup

(�,�)∈ℛ(c)
 

�
�(�) ��(�) +  

�
�(�) ��(�)

ℛ(c) ≝  (�, �) ∈ �(�) × �(�)   ∀(�, �), �(�) + �(�) ≤ �(�, �) 

Kantorovich Relaxation

Langrange Duality

Semi-dual Formulation ℒ�(�, �) ≝sup 
�

�(�) ��(�) +  
�

��(�) ��(�)

∀y ∈ �,   ��(�): = inf
�∈�

�(�, �) − �(�)

C-transform
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Entropy Regularization and Sinkhorn Algorithm                                                                                                                    
Foundamental topics in Optimal Transport

Why Entropy Regularization

Kantorovich Relaxation

Kantorovich Relaxation is a linear programming problem which is non-
differentiable and has high time complexity O((n+m)nmlog(n+m)). 

ℒ�(�, �) ≝ min
�∈�(�,�)

 �, � ≝  
�,�

��,���,�

�(�, �) ≝   � ∈ ℝ+
�×�   ��� = � and ���� = � 

�(�, �)

�1

�∗

�(�, �)�3

�∗

�(�, �)

�2

�∗
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Entropy Regularization and Sinkhorn Algorithm (Discrete Measure Version)                                                                                                                    
Foundamental topics in Optimal Transport

Entropy Regularization

Definition: Given the discrete measures � =  �=1
� ����� and � =  �=1

� ����� 
the discrete entropy of the coupling matrix � is defined as

�(�) ≝−  
�,�

��,� (��� ��,� −  1)

Then the entropy regularized Kantorovich Relaxation can be 
defined as:

ℒ�
�(�, �) ≝ min

�∈�(�,�)
 �, � − ��(�)

where
�(�, �) ≝   � ∈ ℝ+

�×�   ��� = � and ���� = � 

Remarks.
1. this problem is � strongly convex 
2. the solution is unique 
3. instead of the “deterministic” of Kantorovich 
Relaxation, the entroy regularization is 
“probabilistic”
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Entropy Regularization and Sinkhorn Algorithm (Arbitrary Measure Version)                                                                                                                    
Foundamental topics in Optimal Transport

Entropy Regularization

Definition: Given the measures � ∈ ℳ+
1 (�) and � ∈ ℳ+

1 (�), the 
continuous entropy can be defined as:

�(π) ≝−  π(�, �) ���π(�, �) ����

Then the entropy regularized Kantorovich Relaxation can be 
defined as:

ℒ�
�(�, �) ≝ min

π∈�(�,�)
  

�×�
�(�, �) �π(�, �) − ��(π) ,

where
�(�, �) ≝   π ∈ ℳ+

1 (� × �)   ��#π = � and ��#π = � 

Example
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Entropy Regularization and Sinkhorn Algorithm                                                                                                                    
Foundamental topics in Optimal Transport

Why Entropy Regularization

�(�, �)

�1

�∗

ℒ�
�(�, �) ≝ min

�∈�(�,�)
 �, � − ��(�)

�(�, �) ≝   � ∈ ℝ+
�×�   ��� = � and ���� = � 

�(�) ≝−  �,� ��,� (��� ��,� −  1) 

Entropy Regularization

Kantorovich Relaxation is � strongly convex, differentiable and can 
be solved by Sinkhorn algorithm (can be implemented in GPU). 

�∗
�(�, �)

�2

�(�, �)

�3

�∗
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Entropy Regularization and Sinkhorn Algorithm                                                                                                                    
Foundamental topics in Optimal Transport

Why Entropy Regularization

ℒ�(�, �) ≝ min
�∈�(�,�)

 �, � ≝  
�,�

��,���,�

�(�, �) ≝   � ∈ ℝ+
�×�   ��� = � and ���� = � 

Kantorovich Relaxation

ℒ�
�(�, �) ≝ min

�∈�(�,�)
 �, � − ��(�)

�(�, �) ≝   � ∈ ℝ+
�×�   ��� = � and ���� = � 

�(�) ≝−  �,� ��,� (��� ��,� −  1) 

Entropy Regularization

Kantorovich Relaxation is � strongly convex, differentiable and can 
be solved by Sinkhorn algorithm (can be implemented in GPU). 

Kantorovich Relaxation is a linear programming problem which is non-
differentiable and has high time complexity O((n+m)nmlog(n+m)). 
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Entropy Regularization and Sinkhorn Algorithm                                                                                                                    
Foundamental topics in Optimal Transport

The convergence of the Entropy Regularization

 ��, ℒ�
�(�, �) ≝ min

�∈�(�,�)
 �, � − ��(�)

�(�, �) ≝   � ∈ ℝ+
�×�   ��� = � and ���� = � 

�(�) ≝−  �,� ��,� (��� ��,� −  1) 

Entropy Regularization

The unique solution �� converges to the optimal solution with 
maximal entropy within the set of all optimal solution of the 
Kantorovich problem, namely

��
�→0

argmin
�

 −�(�)  � =argmin
�∈�(�,�)

 �, �   

 ℒ�
�(�, �)

�→0
ℒ�(�, �) =  �, � 

��
�→∞

���

Example

Remarks.
1. This tells us if � → ∞, the optimal coupling converges to 
degenerate solution (rank 1) and if � → 0, the optimal coupling 
converges to the original Kantorovich problem. We can use it with 
confidence that as we decrease the value of �, the approxiamation 
will become tighter and tighter.

Can we solver this problem?
-> celebrated Sinkorn Algorithm ！
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Outline Overview                                                                                                                    
Foundamental topics in Optimal Transport

Monge Problem
min

�
   

�
�(�, �(�)) ��(�)  �#� = � 

Kantorovich Relaxation
min

π∈�(�,�)
  

�×�
�(�, �) �π(�, �) 

�(�, �) ≝   π ∈ ℳ+
1 (� × �)   ��#π = � and ��#π = � 

Kantorovich Duality 
ℒ�(�, �) ≝ sup

(�,�)∈ℛ(c)
 

�
�(�) ��(�) +  

�
�(�) ��(�)

ℛ(c) ≝  (�, �) ∈ �(�) × �(�)   ∀(�, �), �(�) + �(�) ≤ �(�, �) 

Kantorovich Relaxation

Langrange Duality

Entropy Regularization
ℒ�

�(�, �) ≝ min
π∈�(�,�)

  
�×�

�(�, �) �π(�, �) − ��(π) 

�(�, �) ≝   π ∈ ℳ+
1 (� × �)   ��#π = � and ��#π = � 

�(π) ≝−  π(�, �) ���π(�, �) ����

Entropy Regularization

Semi-dual Formulation ℒ�(�, �) ≝sup 
�

�(�) ��(�) +  
�

��(�) ��(�)

∀y ∈ �,   ��(�): = inf
�∈�

�(�, �) − �(�)

C-transform
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Property Overview                                                                                                                    
Foundamental topics in Optimal Transport

Monge Problem

Kantorovich Relaxation

Kantorovich Duality 

Monge Problem’s uniqueness and 
existence is not guaranteed 

Kantorovich Relaxation
 exists but may not unique

Relaxation is tight when 
Brenier theorem holds

Strong duality holds

Monge Problem is a combinatorial 
optimization problem

Kantorovich Relaxation is a linear 
programming problem

Entropy Regularization

Approaching the original 
solution as � → 0

Entopy regularized Kantorovich 
Relaxation has unique solution

Entopy regularized Kantorovich 
Relaxation is a differential and 
strongly convex problem

Semi-dual 
Formulation

Equivalent
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Entropy Regularization and Sinkhorn Algorithm                                                                                                                    
Foundamental topics in Optimal Transport

Closed-form solution

ℒ�
�(�, �) ≝ min

�∈�(�,�)
 �, � − ��(�)

�(�, �) ≝   � ∈ ℝ+
�×�   ��� = � and ���� = � 

�(�) ≝−  �,� ��,� (��� ��,� −  1) 

Entropy Regularization

Surprisingly, for the discrete version of our entropy regularized 
Kantorovich problem, there exists the closed-form solution as

��,� = ���/� �−��,�/� ���/� = ����,���  
(� = diag(�)�diag(�))

Proof.
Recall the lagangian function of Kantorovich relaxation 
problem with entropy regularization as
ℒ(�, �, �) =  �, � − ��(�) +  � − ���, � +  � − ����, � 
Since this problem is strongly convex, we can derive its first 
order optimality condition:

�ℒ(�, �, �)
���,�

= ��,� + ����(��,�) − �� − �� = 0

which confirms that
��,� = ���/� �−��,�/� ���/�

∎
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Entropy Regularization and Sinkhorn Algorithm                                                                                                                    
Foundamental topics in Optimal Transport

� ∈ ℝ+
�×�

� ∈  dia
g(�

)�dia
g(�

) 

�∗

Remarks.
1. This is the “geometric” relationship of 
different sets (there is only one coupling 
matrix fullfilling all three constraints).

� ∈  ��� = � 

� ∈  �
� � �

= �  

ℒ�
�(�, �) ≝ min

�∈�(�,�)
 �, � − ��(�)

�(�, �) ≝   � ∈ ℝ+
�×�   ��� = � and ���� = � 

�(�) ≝−  
�,�

��,� (��� ��,� −  1)

Entropy RegularizationGeometric Interpolation
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Entropy Regularization and Sinkhorn Algorithm                                                                                                                    
Foundamental topics in Optimal Transport

Sinkhorn Algorithm

� ∈  ��� = � 

� ∈  �
� � �

= �  

Benefit.
For this descrete measure input, the Sinkhorn algorithm 
is very efficient since it only involves the matrix 
element-wise division.

� ∈  diag(�)�diag(�) 

Given current �, � and �, we can get the projection � 
on this set by

� =
�

��

Projection on set  ��� = � 
 

Projection on set  ���� = � 
 

Given current �, � and �, we can get the projection � 
on this set by

� =
�

���

Given an initialized coupling �, we can alternately 
project this coupling on these two sets until 
convergence. Sinkhorn algorithm guarantees the 
convergence to the unique solution with global linear 
convergence rate.
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Entropy Regularization and Sinkhorn Algorithm                                                                                                                    
Foundamental topics in Optimal Transport

The KL projection interpretation of entropy regularization

The equivalent KL projection interpretation is defined as
�� = Proj�(�,�)

KL (�) ≝ arg min
�∈�(�,�)

KL(� �)

where
�(�, �) ≝   � ∈ ℝ+

�×�   ��� = � and ���� = � 

KL(� �) ≝  
�,�

��,� log  
��,�

��,�
 − ��,� + ��,�

��,� ≝ �−
��,�
�

Entropy Regularization
ℒ�

�(�, �) ≝ min
�∈�(�,�)

 �, � − ��(�)

�(�, �) ≝   � ∈ ℝ+
�×�   ��� = � and ���� = � 

�(�) ≝−  
�,�

��,� (��� ��,� −  1)

The KL projection interpretation of Sinkhorn Algorithm

The equivalent KL projection interpretation of iterative projection 
�ℓ+1 = Proj��

1
KL(�ℓ)  and  �ℓ+2 = Proj��

2
KL(�ℓ+1)

where
��

1 ≝  � :  ��� = �    and   ��
2 ≝  � :  ���� = � 

Remarks.
We can generalise the discrete version to the general 
measure. 

�� ≝ arg min
�∈�(�,�)

KL(� �)

�� ≝ �−�(�,�)
� ��(�)��(�)

which is known as the “static Schrödinger problem”.
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Extensions of OT                                                                                                                    
Foundamental topics in Optimal Transport

Gromov-Wasserstein Distance

Definition: The general setting corresponds to computing couplings 
between metric measure spaces (�, ��, ��) and  (�, ��, ��), where  
(��, ��) are distances, while �� and  �� are measures on their 
respective spaces.

�� (��, ��), (��, ��) 2 =

min
�∈�(��,��)

 
�2×�2

 ��(�, �’) − ��(�, �’) 2 ��(�, �)��(�’, �’)

�3
�4�1 �2

�4
�2

�1

�3

� �
�#

Example

��
(��, �

�)

��(�
�, �

�)

Benefit.
1. If the space � and space � are different to each other, it may 
be hard to define a ground cost �: (� × �) → ℝ among them. 
Then, this Gromov-Wasserstein Distance can be utilized.
2. Gromov-Wasserstein Distance defines a distance metric 
measure spaces up to isometrics: if there exists a bijection φ: � →
� such that ��(�, �’) − ��(φ(x), φ(�’)).
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Extensions of OT                                                                                                                    
Foundamental topics in Optimal Transport

Unbalanced Optimal Transport

ℒ�(�, �) ≝ min
π∈�(�,�)

  
�×�

�(�, �) �π(�, �) + ���(��#π �) + ���(��#π �) ,

Definition: Given the measures � ∈ ℳ+
1 (�) and � ∈ ℳ+

1 (�), the unbalanced 
version of Kantorovich Relaxation problem is defined as

Example 47



Advanced topics in Optimal Transport
- The Riemannian Structure of Optimal Transport

- Wasserstein Gradient Flow and JKO Scheme
- Introduction to the Schrödinger Bridge Problem
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Outline Story                                                                                                                     
Foundamental topics in Optimal Transport

The Riemannian Structure of Optimal Transport

Wasserstein Gradient Flow and JKO Scheme 
min

� ∈ �2(ℝ�)
ℱ(�)

Introduction to the Schrödinger Bridge Problem
min

�∈�(�0,�1)
KL(� �)
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Prerequisite - Smooth Manifold                                                                                                                   
Advanced topics in Optimal Transport

Manifold

Definition: A manifold is a topological space that locally 
resembles Euclidean space near each point. More precisely, an 
n-dimensional manifold is a topological space with the 
property that each point has a neighborhood that is 
homeomorphic to an open subset of n-dimensional Euclidean 
space.

Example of Smooth 
Manifold

Definition: A smooth manifold is a type of manifold that 
is locally similar enough to a vector space to allow one 
to apply calculus.

Smooth Manifold

Example of Non Smooth 
Manifold

Remark.
A manifold is a space that looks like a plane locally. Just like the 
surface of the Earth appears flat but is actually spherical.
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Prerequisite - Riemannian Manifold                                                                                                                   
Advanced topics in Optimal Transport

Geodesics are curves with no intrinsic acceleration. They are the 
generalization of straight lines in Euclidean space to arbitrary Riemannian 
manifolds. An ant living in a Riemannian manifold walking straight ahead 
without making any effort to accelerate or turn would trace out a geodesic.

 Remark. 
A Riemannian manifold is a geometric space on which many geometric 
notions such as distance, angles, length, volume, and curvature are defined.

Definition: A Riemannian metric � on a smooth manifold � assigns to each 
� a positive-definite inner product ��: ��� × ��� → ℝ for each tangent 
space ��� in a smooth way. This induces a norm  ∙ �: ��� → ℝ defined 
by  � � = ��(�, �). A smooth manifold � endowed with a Riemannian 
metric � is a Riemannian manifold, denoted (�, �). 

Riemannian metric and Riemannian Manifold

Geodesics 

 Remark. 
Geodesics can seen as a locally minimal-distance curve on the manifold 
connecting the startpoint and endpoint.

Example In the round sphere the 
maximal geodesics are great circles.

Example A tangent plane of the sphere 
with two vectors in it. A Riemannian 
metric allows one to take the inner 
product of these vectors.
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Prerequisite - Metric space of Riemannian Manifold                                                                                                                   
Advanced topics in Optimal Transport

Definition: An admissible curve is a piecewise smooth curve �: [0,1] → � 
whose velocity �’(�) ∈ ��(�)� is nonzero everywhere it is defined. The 
nonnegative function t ⟶  �’(�) �(�) = ��(�)(�’(�), �’(�)) is defined on 
the interval [0,1] except for at finitely many points. 
The length ℒ(�) of an admissible curve � is defined as

ℒ(�) =  
0

1
 �’(�) �(�) ��

Length of curve on Riemannian Manifold

Example The length of a curve 
can also be expressed by 
integrating the curve derivative.

Metric space induced by Riemannian metric

Definition: For (�, �) a Riemannian manifold, define ��: � × � → [0,∞) by
 

��(�, �) = inf  ℒ(�):  � an admissible curve with �(0) = �, �(1) = � 

Then (�, ��) is a metric space. Besides, this minimum distance curve is the 
geodesics connecting � and �. Example The minimum length of a 

curve denotes the distance (metric) 
between points on manifold.
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The Riemannian Structure of Optimal Transport                                                                                                                    
Advanced topics in Optimal Transport

Riemannian
Manifold

Manifold

Riemannian 
Metric

Distance Induced by 
Riemannian Manifold

Length of Curve

ℒ(�) =  
0

1
 �’(�) �(�) �� ��(�, �) = inf

�(0)=�, �(1)=�
ℒ(�)

Tangent
Space

53



The Riemannian Structure of Optimal Transport                                                                                                                    
Advanced topics in Optimal Transport

Wasserstein Space (�2(ℝ�),�2)

Let �2(ℝ�) the space of probability measures on ℝ� with finite second moments

�2(ℝ�) =  � ∈ ℳ+
1 (ℝ�) ,   � 2��(�) < ∞ 

�2(ℝ�) is endowed with the Wasserstein-2 distance from optimal transport

�2
2(�, �) = inf

π∈�(�,�)
 

ℝ�×ℝ�
 � − � 2 �π(�, �)

Then, the metric space (�2(ℝ�),�2) is called the Wasserstein space.

�2(ℝ�)

�1

�2

�2
2(�1, �2)

Example
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The Riemannian Structure of Optimal Transport                                                                                                                    
Advanced topics in Optimal Transport

Riemannian metric of �2(ℝ�)  

Denote �2(�) the space of vector-valued, square-integrable function 

�2(�) =  �: ℝ� → ℝ�,  
ℝ�

 �(�) 2��(�) < ∞ 

Then the Riemannian metric ��: ���2(ℝ�) × ���2(ℝ�) → ℝ of 
�2(ℝ�) is the inner product between functions in �2(�)

 
ℝ�

 �(�), �(�) ℝ� ��(�)

Riemannian interpretation of �2(ℝ�)  

We can view the whole probability measure �2(ℝ�) as a 
infinite dimension Riemannian manifold (a probability 
measure is a positive infinite dimension vector with sum 
equals 1).

Example
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The Riemannian Structure of Optimal Transport                                                                                                                    
Advanced topics in Optimal Transport

Tangent space ���2(ℝ�)  

 

Let �� = (�(�))#�0 denotes the evolving probabilistic measure 
under the process �(�). 
Definition. Given a smooth test function �, the velocity field 
��(�) at �� is defined as

�
��

 �(�) ��(�)�� =  ��(�) ∙  ��(�) ��(�)��

Remark.
The tangent space is really complicated, we only leave out an 
informal definition for understanding.

���2(ℝ�) =  
�: ℝ� → ℝ� � ∈ �2(�)
� = � (� −  ��)#� 

� >  0, � is an optimal transport map
 

Velocity Field ��(�) at ��

Among this tangent space, there is a very interesting velocity 
field which defines the instantaneous probabilistic evolution.

 Remark. 
1. There exists another definition of velocity field as

��(�) = lim
�→0

(���→��+� − ��)(�)
�

2. We can also view ��(�) as the velocity field of 
particles.  
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The Riemannian Structure of Optimal Transport                                                                                                                    
Advanced topics in Optimal Transport

Continuity Equation

Definition. Let �� = (�(�))#�0 denotes the evolving probabilistic 
measure under the process �(�) and �� represents the velocity 
field of ��. The continuity equation describes the relationship 
between flow field and probabilistic measure:

���

��
+ � ∙ (����) = 0

Proof. Let � be a smooth test function, and consider the function 
� →  �(�) ��(�)��, we have  

 �(�)
���(�)

��
�� =

�
��

 �(�) ��(�)��

=
�
��

 �(�(�, �)) �0(�)��

=  ��(�(�, �)) ∙  ��(�(�, �)) �0(�)��

=  ��(�) ∙  ��(�) ��(�)�� =−  �(�) � ∙ (��(�) ��(�)) ��

∎

 Remark. 
This continuity equation links the velocity of local 
particles �(�) and the global law ��. 

Given this equation, we can now define the length of curve 
on the riemannian manifold of probabilistic measure. 57



The Riemannian Structure of Optimal Transport                                                                                                                    
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Recall the Wasserstein Geodesic

Definition. Given the optimal transport map ��
�, the 

wasserstein geodesic between � and � is defined as
�� = ((1 − �)�� + � ��

�)#�,   � ∈ [0,1]

Benamou - Brenier Formulation

Length of “curve” on Riemannian Manifold

Definition: Given the measures � ∈ ℳ+
1 (ℝ�) and � ∈ ℳ+

1 (ℝ�), the Riemannian metric induces a distance 
(length of curve) as:

���(�, �) = inf
��∈ℳ+

1 (ℝ�), ��∈�2(��)
  

0

1
 

ℝ�
 ��(�) 2 ���(�)��    

���

��
+ � ∙ (����) = 0, �0 = �, �1 = � 

Definition: Recall the Wasserstein distance

�2
2(�, �) ≝  min

π∈�(�,�)
 

�×�
�(�, �)2 �π(�, �) 

Benamou - Brenier Formulation denotes that 
�2

2(�, �) = ���(�, �)

Remark. 
This Riemannian Structure of Optimal Transport 
is known as Otto Calculas, It explains the 
geometric meaning of Wasserstein distance. 

Remark. 
Another benifits of this 
displacement interpolation 
is that, this interpolation is 
linear (constant velocity 
geodesic). 
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Riemannian
ManifoldManifold �2(ℝ�)

Riemannian Metric

 
ℝ�

 �(�), �(�) ℝ� ��(�)

Distance Induced by 
Riemannian Manifold

Length of Curve

Tangent Space
���

�� + � ∙ (����) = 0

 
0

1
 

ℝ�
 ��(�) 2 ���(�)��

���(�, �) = inf
��∈ℳ+

1 (ℝ�), ��∈�2(��)
  

0

1
 

ℝ�
 ��(�) 2 ���(�)��    

���

��
+ � ∙ (����) = 0, �0 = �, �1 = � 

�2
2(�, �) ≝  min

π∈�(�,�)
 

�×�
�(�, �)2 �π(�, �) 

Wasserstein2
Distance
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Prerequisite - Gradient Flow in Euclidean space                                                                                                                    
Advanced topics in Optimal Transport

Gradient flow in Euclidean space ℝ�

�(�, �) = ���(��) ∗ ���(��)
+4(� − 0.5)2 + 4(� − 0.5)2 ��(�, �) =  

−� ∗ ���(��) ∗ ���(��) + 8(� − 0.5)
−� ∗ ���(��) ∗ ���(��) + 8(� − 0.5) 

Example of energy function Example of field of negetive gradient flow
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The gradient flow describes the evolution of a point in the 
gradient vector field. We can represent it by a curve �� =
�(�) that changes over time, and this curve satisfies the 
following ordinary differential equation (ODE)

Definition. 

 �� =
���

��
=− ��(��)

�(0) = �0

Prerequisite - Gradient Flow in Euclidean space                                                                                                                    
Advanced topics in Optimal Transport

Optimization in Euclidean space ℝ�

�(�, �) = ���(��) ∗ ���(��)
+4(� − 0.5)2 + 4(� − 0.5)2

�0

�∗

��
��

min
�∈ℝ�

�(�)

where �:  ℝ� → ℝ describes the loss function

Euclidean Gradient Flow

Example 
Gradient flow implicitly 

defines many odes

How to solve it in practice?
-> Time discretization 
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Time discretization of gradient flow in Euclidean space ℝ�

There are two time discretization methods of this 
gradient flow
• Gradient descent

��+1 = �� − � ��(��)
i.e. Forward Euler (explicit)

��+1 − ��

�
=− ��(��)

• Proximal point algorithm

��+1 =arg min
�

�(�) +
1
2�

 � − �� 2

i.e. Backward Euler (implicit)
��+1 − ��

�
=− ��(��+1)

Remark. 
1. Proximal point algorithm are originaly used to solve 
the non-smooth optimization problem.
2. If the optimization is set up in another space, we 
must replace the original metric 1

2�
 � − �� 2. 

How to define the gradient flow in Wasserstein space?
What is the explicit and implicit discretization in Wasserstein space?
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min
� ∈ �2(ℝ�)

ℱ(�)

Wasserstein Gradient Flow ��2ℱ(��)

Definition: The Wasserstein Gradient Flow ��2ℱ(��) at �� 
can be defined as

��2ℱ(��) = �  
�ℱ(��)

���
 

where the �ℱ(��)
���

 represents the first variation for some linear 

perturbation � (s. t.   �� + � ∈  �2(ℝ�), � ∈  �2(ℝ�))

ℱ(� + ��) ≈ ℱ(�) + � 
�ℱ(�)

��
(�) ��(�)

Wasserstein Gradient Flow and JKO Scheme                                                                                                                    
Advanced topics in Optimal Transport

Variational Optimization in the Wasserstein Space

Variational 
Optimization 
Problem

ℱ(��)

Potential Energy  �(�) ���(�)

Negative 
Entropy

1
2

 ���(��(�)) ���(�)

KL Divergence KL(�� exp(−�(�)))

=  �(�) + ���(��(�)) ���(�)

Example 

Two perspectives of Wasserstein Gradient Flow ��2ℱ(��)

���

��
= � ∙  ��2ℱ(��) �� ,    ��=0 = �0

Eulerian (Law/Density)

�� = �� =− ��2ℱ(��),    �0~�0
Langrangian (Particles)
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���

��
= � ∙  ��2ℱ(��) �� ,    ��=0 = �0

Wasserstein Gradient Flow and JKO Scheme                                                                                                                    
Advanced topics in Optimal Transport

�� = �� =− ��2ℱ(��),    �0~�0

Langrangian (Particles) Eulerian (Law/Density)

Remark. 
Wasserstein gradient flow is extremely elegant. It tells us that sampling is just a variational 
optimization over some functional in Wasserstein space, and its optimization trajectory follows 
the geodesic of the probability space manifold. In the machine learning community, many 
scholars use this tool to analyze the convergence properties of sampling algorithm.

Example 
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Wasserstein Gradient Flow ��2ℱ(��) = �( �ℱ(��)
���

)

Proof. 
Recall the definition of the gradient definition.

� ℱ(�)[�] = lim
�→0

ℱ((�� + ��)#�) − ℱ(�)
�

we expand �� = (�� + ��)#�
�� = � + � − � ∙ (��)

then we expand ℱ((�� + ��)#�)

ℱ((�� + ��)#�) = ℱ(� + � − � ∙ (��)) = ℱ(�) − � 
�ℱ(��)

���
(� ∙ (��))��

then by integration-by-parts

ℱ((�� + ��)#�) = ℱ(�) + � �
�ℱ(��)

���
∙ ���

finally

 ��2ℱ(�), � 
�

= � ℱ(�)[�] =  �
�ℱ(��)

���
∙ � ����

��2ℱ(�) = �
�ℱ(��)

���
∎

Wasserstein Gradient Flow and JKO Scheme                                                                                                                    
Advanced topics in Optimal Transport
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Variational 
Optimization 
Problem

ℱ(��) �ℱ(��)
���

��2ℱ(��)

= �
�ℱ(��)

���

���

��
+ � ∙ (����) = 0

Potential Energy  �(�) ���(�) � �� ���

��
= � ∙ (�� ��)

Negative 
Entropy

1
2

 ���(��(�)) ���(�)
1
2

���(��) +
1
2

1
2

����(��)
���

��
=

1
2

∆��

heat equation

KL Divergence KL(�� exp(−�(�))) =

 �(�) + ���(��(�))���(�)

� + ���(��) + 1 ����  
��

exp(−�(�))
 ���

��
= ∆�� + � ∙ (�� ��)

Fokker-Planck Equation

Wasserstein Gradient Flow and JKO Scheme                                                                                                                    
Advanced topics in Optimal Transport

Wasserstein Gradient Flow Example
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Time discretization of gradient flow in Wasserstein space (�2(ℝ�),�2)
There are two time discretization methods of the 
wasserstein gradient flow
• Wasserstein gradient descent

��+1 = (�� − ���2ℱ(��))#��
i.e. Forward Euler (explicit)

• JKO flow of JKO scheme

��+1 ∈ JKO�ℱ(��) =arg min
�∈�2(ℝ�)

 ℱ(�) +
1
2�

�2
2(�, ��) 

i.e. Backward Euler (implicit)

Remark. 
There exists another proof which shows that as the step 
size � → 0, the JKO flow becomes the forward euler 
wasserstein gradient descent. 
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Introduction to the Schrödinger Bridge Problem                                                                                                                    
Advanced topics in Optimal Transport

 First Approache - Disintegration of measures
We will see the connection between the static and 
dynamic formulation of Schrödinger Bridge.

Second Approache - Girsanov Theorem
We will reveal the stochastic control perspective of 
the Schrödinger Bridge.

IPF (iterative proportional fitting) Algorithm
IPF (iterative proportional fitting) is the classical 
solver for Schrödinger Bridge.
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OT over the path space 

Path space and measure

Definition: Path space � is an abstract space which contains all 
possible paths (i.e. curves) �: [0,1] → � on the space � (i.e. ℝ�). 
Informally, the dynamics of “particles” between input measures �0 
and �1 at times � = 0,1 is described by the path measure � ∈ ℳ+

1 (�).

Example 
path measure for discrete measures

Definition: Given the measures �0 ∈ ℳ+
1 (�) and �1 ∈ ℳ+

1 (�), 
the dynamical version of classical OT seeks a path measure � 
which minimizes

�2
2(�0, �) = min

�∈�(�0,�1)
  

�
ℒ(�)2 ��(�) ,

where
�(�0, �1) ≝   � ∈ ℳ+

1 (�)   �0#� = �0 and �1#� = �1 
Here, �0# and �1# are the push-forwards of the projections.

 Remark. 
The connection between the optimal coupling �∗and 
the optimal path measure �∗ is that �∗ only gives mass 
to geodesics joining pairs of points in proportion 
prescribed by �∗. For the discrete measure, we have

�∗ =  
�,�

��,��(��,��)           �∗ =  
�,�

��,�����,��
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Schrödinger Bridge Problem (dynamic)
 Definition: Given the discrete measures � =  �=1

� ����� and 
� =  �=1

� �����, the dynamic Schrödinger Bridge seeks a 
path measure � which minimizes

min
�∈�(�0,�1)

KL(� �)

where � defines the path measure of a Brownian motion 
with � volatity (�� = ���) and

�(�, �) ≝   � ∈ ℳ+
1 (�)   �0#� = � and �1#� = � 

Definition: Given the discrete measures � =  �=1
� ����� 

and � =  �=1
� �����, the static Schrödinger Bridge 

seeks a coupling π =  �,� ��,��(��,��) which minimizes
�� = Proj�(�,�)

KL (�) ≝ arg min
�∈�(�,�)

KL(� �)

where
�(�, �) ≝   � ∈ ℝ+

�×�   ��� = � and ���� = � 

KL(� �) ≝  
�,�

��,� log  
��,�

��,�
 − ��,� + ��,�

��,� ≝ �−
��,�
�

Recall the Schrödinger Bridge Problem (static)

Example Example 70
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Schrödinger Bridge Problem (dynamic)
 Definition: Given the measures �0 ∈ ℳ+

1 (�) and �1 ∈
ℳ+

1 (�), the dynamic Schrödinger Bridge seeks a path 
measure � which minimizes

min
�∈�(�0,�1)

KL(� �)

where � defines the path measure of a Brownian motion 
with � volatity (�� = ���) and
�(�0, �1) ≝   � ∈ ℳ+

1 (�)   �0#� = �0 and �1#� = �1 

Is there any connection between 
static and dynamic formulation?

Recall the Schrödinger Bridge Problem (static)

Definition: Given the measures �0 ∈ ℳ+
1 (�) and 

�1 ∈ ℳ+
1 (�), the static Schrödinger Bridge seeks a 

coupling π which minimizes
π∗ ≝ arg min

π∈�(�0,�1)
KL(� �)

where
�(�0, �1) ≝   π ∈ ℳ+

1 (� × �)   ��#π = �0, ��#π = �1 

KL(� �) ≝  log  
��(�, �)
��(�, �)

 ��(�, �)

��(�, �) ≝ �−�(�,�)
� ��(�)��(�)
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Schrödinger Bridge Problem (dynamic)

Schrödinger Bridge Problem (static)

First Approache - Disintegration of measures
ℙ(���ℎ) = ℙ(���ℎ   �(0) = �0, �(1) = �1)  ∙   ℙ0,�(�0, �1)

min
�∈�(�0,�1)

KL(� �) =  log  
�ℙ
��

 �ℙ =  log  
�ℙ0,�(�0, �1)
��0,�

� (�0, �1)
 �ℙ0,�(�0, �1) +  log  

�ℙ(���ℎ �0, �1)
���(���ℎ �0, �1)

 �ℙ(���ℎ �0, �1)

= 0 for �ℙ(���ℎ �0, �1) = ���(���ℎ �0, �1)

Brownian Bridge

Proof. 

min
π∈�(�,�)

 log  
�ℙ0,�(�0, �1)
��0,�(�0, �1)

 �ℙ0,�(�0, �1)

=− �(π) −  log ��0,�
� (�0, �1) �ℙ0,�(�0, �1)

since ��0,�
� (�0, �1) = �ℚ(�0) �(�1 �0, �)

=− �(π) −  −
 �0 − �1 2

2�
 �ℙ0,�(�0, �1) + �����

=   �0 − �1 2 �ℙ0,�(�0, �1) − 2� �(π)                 ∎

��� =
1

1 − �
(�1 − ��)�� + ���

ℙ(�� �0) = �((1 − �)�0 + ��1, �(1 − �))

Equivalent to the 
Entropy Regularized OT
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Remark.
As � → 0, the whole problem becomes more deterministics (less stochastic and less regularized)

Introduction to the Schrödinger Bridge Problem                                                                                                                     
Advanced topics in Optimal Transport

First Approache - Disintegration of measures
ℙ(���ℎ) = ℙ(���ℎ   �(0) = �0, �(1) = �1)  ∙   ℙ0,�(�0, �1)

min
�∈�(�0,�1)

KL(� �) =  log  
�ℙ
��

 �ℙ =  log  
�ℙ0,�(�0, �1)
��0,�

� (�0, �1)
 �ℙ0,�(�0, �1) +  log  

�ℙ(���ℎ �0, �1)
���(���ℎ �0, �1)

 �ℙ(���ℎ �0, �1)
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Schrödinger Bridge 
(dynamic)

Schrödinger Bridge 
(static)

First Approache - Disintegration of measures
ℙ(���ℎ) = ℙ(���ℎ   �(0) = �0, �(1) = �1)  ∙   ℙ0,�(�0, �1)

Brownian Bridge

Remark.
1. If we have the optimal path measure �∗, then �∗ = �0,1

∗ . 
2. If we have the optimal coupling �∗, then �∗ = �∗ ∙  ��(���ℎ �0, �1).
3. In the discrete setting, we have

�∗ =  
�,�

��,�
∗ �(��,��)    and   �∗ =  

�,�

��,�
∗ ���,��
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Second Approache - Girsanov Theorem
Given the SDE

��� = �(�, ��)�� + ���
The law ℙ of �� and law � of �� has the following property

 
���ℎ�

log  
�ℙ
��

 �ℙ =
1

2�2   �(�, ��) 2�ℙ

=
1

2�2  
ℝ�

 
0

1
 �(�, ��) 2 �� ���(�) =

1
2�2 �  

0

1
 �(�, ��) 2 �� 

Entropy Regularization OT
(Stochastic Control Perspective)

min
�

�  
0

1
 �(�, ��) 2 �� 

��� = �(�, ��)�� + ���
�0~�0,        �1~�1

Entropy Regularization OT
(Fluid Dynamic Perspective)

min
� ��

 
ℝ�

 
0

1
 �(�, ��) 2 �� ���(�)

���

��
+ � ∙ (� ��) −

�2

2
∆�� = 0

��=0~�0,        ��=1~�1

Fokker-Planck 
Equation
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Second Approache - Girsanov Theorem

Entropy Regularization OT
Dynamic Schrödinger Bridge 

(Stochastic Control Perspective)

min
�

�  
0

1
 �(�, ��) 2 �� 

��� = �(�, ��)�� + ���
�0~�0,        �1~�1

Entropy Regularization OT
(Fluid Dynamic Perspective)

min
� ��

 
ℝ�

 
0

1
 �(�, ��) 2 �� ���(�)

���

��
+ � ∙ (� ��) −

�2

2
∆�� = 0

��=0~�0,        ��=1~�1

Fokker-Planck 
Equation

Kantorovich OT
(Stochastic Control Perspective)

min
�

�  
0

1
 �(�, ��) 2 �� 

��� = �(�, ��)��
�0~�0,        �1~�1

Entropy 
Regularization

Kantorovich OT
(Benamou - Brenier Formulation)

min
� ��

 
ℝ�

 
0

1
 �(�, ��) 2 �� ���(�)

���

��
+ � ∙ (� ��) = 0

��=0~�0,        ��=1~�1

Entropy 
Regularization

Remark.
The Stochastic Control 
Perspective has closed 
form solutions, but this is 
far more beyond this 
tutorial.
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IPF (iterative proportional fitting) Algorithm

set �0 follow the brownian motion
�2�+1 = arg min KL(�   �2�),    ��=1 = �1 

�2�+2 = arg min KL(�   �2�+1),    ��=0 = �0 

Remark.
1. Since this problem is strongly convex, this 
IPF can always converge to the optimal 
solution.
2. IPF can be seen as the continuous version 
of Sinkorn algorithm.
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Recommended reading materials

  - Computational Optimal Transport (Chapter 1)

https://arxiv.org/abs/1803.00567

  - ICML 2023 Tutorial Optimal Transport in Learning, Control, and Dynamical Systems 

https://icml.cc/virtual/2023/tutorial/21559 

  - Statistical Applications of Wasserstein Gradient Flows

  https://www.youtube.com/watch?v=EBA0NyY4Myc

  - A SURVEY ON OPTIMAL TRANSPORT FOR MACHINE LEARNING: THEORY AND APPLICATIONS

  https://arxiv.org/pdf/2106.01963

  - Recent Advances in Optimal Transport for Machine Learning

  https://arxiv.org/pdf/2306.16156

  - POT doc

  https://pythonot.github.io/

78


