Applied Stochastic Analysis

Bangyan Liao liaobangyan@westlake.edu.cn

Oct 2024

Outline

- 1. Probability Space Formalism
- 2. Stochastic Process Formalism
- 3. Itô Calculus
- 4. Kolmogorov Equations
- 5. Generator for Markov Process
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

Outline

- Probability Space Formalism
 Probability Space
 Random Variable
 Lebesgue—Stieltjes Integral
- 2. Stochastic Process Formalism
- 3. Itô Calculus

- 4. Kolmogorov Equations
- 5. Generator for Markov Process
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

Probability Space

Probability Space Formalism

Definition (Probability Space)

A probability space is defined as a 3-element tuple $(\Omega, \mathcal{F}, \mathbb{P})$ where

- $ightharpoonup \Omega$ is the sample space, i.e. the set of possible outcomes. For example, for a coin toss $\Omega = \{ {\sf Head}, {\sf Tails} \}$
- The σ -algebra $\mathcal F$ represents the set of events we may want to consider. Continuing the coin toss example, we may have $\Omega=\{\emptyset, \text{Head}, \text{Tails}, \{\text{Head}, \text{Tails}\}\}$
- A probability measure $\mathbb{P}: \mathcal{F} \to [0,1]$ is a function which assigns a number in [0,1] to any set in the σ -algebra \mathcal{F} . The function \mathbb{P} must be σ -additive and $\mathbb{P}(\Omega) = 1$

σ -algebra

Probability Space Formalism

Definition (σ -algebra)

A σ -algebra $\mathcal F$ is a collection of sets satisfying the property

- $ightharpoonup \mathcal{F}$ contains $\Omega: \Omega \in \mathcal{F}$.
- ▶ \mathcal{F} is closed under complements: if $A \in \mathcal{F}$ then $\Omega \setminus A \in \mathcal{F}$.
- ▶ \mathcal{F} is closed under countable union: if $\forall i \ A_i \in \mathcal{F}$, then $\bigcup_i A_i \in \mathcal{F}$.

We use the notation $\mathcal{B}(\mathbb{R}^d)$ for the Borel σ -algebra of \mathbb{R}^d , which we can think of as the canonical σ -algebra for \mathbb{R}^d - it is the most compact representation of all measurable sets in \mathbb{R}^d .

Probability Measure

Probability Space Formalism

Definition (Probability Measure)

A probability measure $\mathbb{P}: \mathcal{F} \to [0,1]$ is a function which assigns a number in [0,1] to any set in the σ -algebra \mathcal{F} .

- ▶ For every $A \in \mathcal{F}$, $\mathbb{P}(A)$ is non-negative.
- $ightharpoonup \mathbb{P}(\Omega) = 1.$
- ▶ For all incompatible set $A_n \in \mathcal{F}$,

$$\mathbb{P}\left(\bigcup_{n} A_{n}\right) = \sum_{n} \mathbb{P}(A_{n}) \tag{1}$$

Random Variable

Probability Space Formalism

Definition (Random Variable)

For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a real-valued random variable $x(\omega)$ is a function $x:\Omega\to\mathbb{R}^d$, requiring that $x(\omega)$ is a measurable function, meaning that the pre-image of $x(\omega)$ lies within the σ -algebra \mathcal{F} :

$$\mathbf{x}^{-1}(B) = \{\omega : \mathbf{x}(\omega) \in B\} \in \mathcal{F}, \quad \forall B \in \mathcal{B}(\mathbb{R}^d)$$
 (2)

Definition (Probability Distribution)

This allows us to assign a numerical representation to outcomes in Ω . Then, we can ask questions such as what is the probability $P: \mathbb{R}^d \to [0,1]$ that x is contained within a set $B \subseteq \mathbb{R}^d$

$$P(\mathbf{x}(\omega) \in B) = \mathbb{P}\left(\{\omega : \mathbf{x}(\omega) \in B\}\right) \tag{3}$$

Lebesgue-Stieltjes Integral

Probability Space Formalism

Definition (Lebesgue-Stieltjes Integral)

For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a measurable function $f : \Omega \to \mathbb{R}$ and a subset $A \in \mathcal{F}$, the Lebesgue–Stieltjes integral

$$\int_{A} f(x)d\mathbb{P}(x) \tag{4}$$

is a Lebesgue integral with respect to the probability measure \mathbb{P} .

If
$$A = \Omega$$
, then $\mathbb{E}_{\mathbb{P}}[f(x)] = \int_{\Omega} f(x) d\mathbb{P}(x)$.
Let $f(x) = \mathbf{1}(x \in A)$, then $\mathbb{E}_{\mathbb{P}}[\mathbf{1}(x \in A)] = \int_{A} d\mathbb{P}(x) = \mathbb{P}(A)$.

Outline

- 1. Probability Space Formalism
- Stochastic Process Formalism
 Stochastic Process
 Wiener Process
 Stochastic Differential Equation
- 3. Itô Calculus

- 4. Kolmogorov Equations
- 5. Generator for Markov Process
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

Stochastic Process

Stochastic Process Formalism

Definition (Stochastic Process)

Given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a stochastic process is a collection of random variables X_t or $x(\omega, t) : \Omega \times \mathcal{T} \to \mathbb{R}$ indexed by \mathcal{T} , which can be written as

$$\{x(\omega,t):t\in\mathcal{T}\}\tag{5}$$

Stochastic Process

Stochastic Process Formalism

Definition (Filtration)

A filtration $\mathfrak{F} = (\mathcal{F}_t)_{t \in \mathcal{T}}$ on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a sequence of indexed sub- σ -algebra of \mathcal{F} :

$$\mathcal{F}_s \subseteq \mathcal{F}_t \subseteq \mathcal{F}, \quad \forall s \le t$$
 (6)

We then call the space $(\Omega, \mathcal{F}, \mathfrak{F}, \mathbb{P})$ an \mathfrak{F} -filtered probability space. This allows us to define processes that only depend on the past and present.

Definition (Adapted Process)

A stochastic process x is \mathcal{F}_{t} -adapted if $x(\omega, t)$ is \mathcal{F}_{t} -measurable:

$$\{\omega : x(\omega, t) \in B\} \in \mathcal{F}_t, \quad \forall t \in T, \forall B \in \mathcal{B}(\mathbb{R}^d)$$
 (7)

Wiener Process

Stochastic Process Formalism

Definition (Wiener Process)

An \mathcal{F}_{t} -adapted Wiener process (Brownian motion) is a stochastic process W_{t} with the following properties:

- $V_{t_0} = 0.$
- ▶ If $[t_1, t_2] \cap [s_1, s_2] = \emptyset$, then $W_{t_2} W_{t_1}$ and $W_{s_2} W_{s_1}$ are independent
- $igwedge W_{t_2} W_{t_1} \sim \mathcal{N}(0, t_2 t_1) \ ext{for} \ t_2 \geq t_1$

Stochastic Differential Equation

Stochastic Process Formalism

Definition (Stochastic Differential Equation)

For \mathcal{F}_t -adapted stochastic processes $\mu(t, X_t)$ and $\sigma(t, X_t)$, an Itô process X_t is defined as

$$X_{t} = X_{0} + \int_{0}^{t} \mu(s, X_{s}) ds + \int_{0}^{t} \sigma(s, X_{s}) dW_{s},$$
 (8)

which is often notationally simplified to

$$dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t.$$
(9)

Outline

- 1. Probability Space Formalism
- 2. Stochastic Process Formalism
- 3. Itô Calculus Itô Integral Itô Lemma

- 4. Kolmogorov Equations
- 5. Generator for Markov Process
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

Itô Calculus

Naively defining the integral with respect to Brownian motion as before is problematic, since the limit is no longer well-defined (unique) for this case:

$$\int_{a}^{b} X_{t} dW_{t} = \lim_{n \to \infty} \sum_{i=0}^{n-1} X_{t_{i}^{*}} \left(W_{t_{i+1}} - W_{t_{i}} \right), \tag{10}$$

where, $t_1 = a < t_2 < ... < t_n = b, t_i^* \in [t_i, t_{i+1}]$. For the above limit to exist, we require that the function W_{t_i} has a bounded total variation in t, which does not happen, since Brownian-motion paths do not have bounded total variation.

Definition (Itô Integral)

If we fix the choice $t_i^* = t_i$, it can be shown that this limit will converge in the mean-square sense.

$$\int_{a}^{b} X_{t} dW_{t} = \lim_{n \to \infty} \sum_{i=0}^{n-1} X_{t_{i}} \left(W_{t_{i+1}} - W_{t_{i}} \right). \tag{11}$$

Remark.

The Itô integral is special because it is a martingale.

$$\mathbb{E}\left[\int_0^t Y_s dW_s | \mathfrak{F}_r\right] = \int_0^r Y_s dW_s, \quad r \le t$$
 (12)

when \mathfrak{F}_r is the filtration generated by $\{W_s, Y_s\}_{s \leq r}$.

Lemma (Quadratic Variation)

For a partition $\Pi = \{t_0, t_1, ..., t_j\}$ of an interval [0, T], let $|\Pi| = \max_i (t_{i+1} - t_i)$. A Brownian motion W_t satisfies the following equation with probability 1:

$$\lim_{|\Pi| \to 0} \sum_{i} (W_{t_{i+1}} - W_{t_i})^2 = T \tag{13}$$

Remark.

To view it informally, we can say

$$(dW)^2 = dt (14)$$

which is a core transformation in the following proof of Itô Lemma.

Theorem (Itô's lemma)

Let f(x) be a smooth function of two variables, and let X_t be a stochastic process satisfying $dX_t = \mu_t dt + \sigma_t dW_t$ for a Brownian motion W_t . Then

$$df(t,X_t) = \left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{1}{2}\sigma_t^2 \frac{\partial^2 f}{\partial x^2}\right) dt + \frac{\partial f}{\partial x}\sigma_t dW_t.$$
 (15)

Proof.

Following the Taylor expansion, we have

$$df(t, X_t) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dX_t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} (dX_t)^2$$

$$= \left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{1}{2} \sigma_t^2 \frac{\partial^2 f}{\partial x^2} \right) dt + \sigma_t \frac{\partial f}{\partial x} dW_t$$
(16)

Itô Lemma

Itô Calculus

Remark.

For some more complicated SDE

$$dY_t = \mu(t, Y_t) dt + \sigma(t, Y_t) dB_t, \qquad (17)$$

we can define a function such that $Y_t = f(t, X_t)$ and use Itô Lemma to identify the dY_t .

Outline

- 1. Probability Space Formalism
- 2. Stochastic Process Formalism
- 3. Itô Calculus

- 4. Kolmogorov Equations
 Kolmogorov Backward Equation
 Kolmogorov Forward Equation
 Some Corollaries
- 5. Generator for Markov Process
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

Kolmogorov Equations

In probability theory, Kolmogorov equations, including Kolmogorov forward equations and Kolmogorov backward equations, characterize continuous-time Markov processes. In particular, they describe how the probability of a continuous-time Markov process in a certain state changes over time. — WikiPedia

For the case of a countable state space and denote the probability from state x at time s to state y at some later time t to be p(s,x;t,y). The Kolmogorov forward equations read

$$\frac{\partial p(s,x;t,y)}{\partial t} = \sum_{z} p(s,x;t,z) A_{zy}(t), \tag{18}$$

while the Kolmogorov backward equations are

$$\frac{\partial p(s,x;t,y)}{\partial s} = -\sum_{z} p(s,z;t,y) A_{xz}(t), \tag{19}$$

where
$$A(t)$$
 is the generator and $A_{xy}(t) = \left[\frac{\partial p(s,x;t,y)}{\partial t}\right]_{t=s}$, $\sum_{z} A_{yz}(t) = 0$.

Kolmogorov Backward Equation

Kolmogorov Equations

Theorem (Kolmogorov Backward Equation)

For a stochastic process following the form of $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$. The Kolmogorov Backward Equation has the form

$$\begin{cases} -\frac{\partial u(x,s)}{\partial s} = \mu(s,x) \frac{\partial u(x,s)}{\partial x} + \frac{1}{2}\sigma^2(s,x) \frac{\partial^2 u(x,s)}{\partial x^2}, & s < t \\ u(x,t) = f(x) \end{cases}$$
(20)

Then, if $f(x) = \delta_y(x)$, we can derive the transition probability density p(s, x; t, y) through the propagation of Kolmogorov Backward Equation.

$$\begin{cases}
-\frac{\partial p(s,x;t,y)}{\partial s} = \mu(s,x) \frac{\partial p(s,x;t,y)}{\partial x} + \frac{1}{2}\sigma^2(s,x) \frac{\partial^2 p(s,x;t,y)}{\partial x^2}, & s < t \\
p(t,x;t,y) = \delta_y(x)
\end{cases}$$
(21)

Proof of Kolmogorov Backward Equation

Kolmogorov Equations

Proof.

Let us recall the Itô Lemma

$$df(X_t) = \left(\mu_t \frac{\partial f}{\partial x} + \frac{1}{2} \sigma_t^2 \frac{\partial^2 f}{\partial x^2}\right) dt + \frac{\partial f}{\partial x} dW_t$$

$$= \mathcal{L}f(X_t) + \frac{\partial f}{\partial x} dW_t$$
(22)

Then, suppose u(t,x) solves the partial differential equation (PDE)

$$\partial_t u + \mathcal{L}u = 0$$
, for $t \le T$ with $u(T, x) = f(x)$ (23)

Proof of Kolmogorov Backward Equation

Kolmogorov Equations

Proof.

By Ito with
$$X_t = x$$

 $\mathbb{E}\left[f(X_T)|X_t=x\right]=u(t,x)$

$$f(X_T) = u(T, X_T)$$

$$= u(t, x) + \int_t^T (\partial_t u(s, X_s) + \partial_{X_s} u(s, X_s)) ds$$

$$= u(t, x) + \int_t^T (\partial_t u(s, X_s) + \mathcal{L}u(s, X_s)) ds + \int_t^T \partial_x u(s, X_s) \sigma_s(X_s) dW_s$$

(22)

Remarks of Kolmogorov Backward Equation

Kolmogorov Equations

Remark.

The Kolmogorov Backward Equation can seen as the optimality condition of the "mean field dynamic programming" problem.

To demonstrate that, recall the expectation explaining $u(x,s) = \mathbb{E}[f(X_t)|X_s = x]$. The optimality condition states that

$$\mathbb{E}\left[f(X_t)|X_s=x\right] = \mathbb{E}\left[\mathbb{E}\left[f(X_t)|X_{s+\Delta}\right]|X_s=x\right] = \mathbb{E}\left[u(X_{s+\Delta},s+\Delta)|X_s=x\right] \quad (23)$$

Then, if we denote $du(X_s,s)=\lim_{\Delta\to 0}u(X_{s+\Delta},s+\Delta)-u(X_s,s)$, the optimality condition $\mathbb{E}\left[du(X_s,s)|X_s=x\right]=0$ can be stated as

$$-\frac{\partial u(x,s)}{\partial s} = -\mathbb{E}\left[\frac{\partial u(X_s,s)}{\partial s}|X_s = x\right] = \mathbb{E}\left[\frac{\partial u(X_s,s)}{\partial X_s}|X_s = x\right]$$
(24)

Fokker-Planck (FPK) equation

Kolmogorov Equations - Kolmogorov Forward Equation

Theorem (Fokker-Planck (FPK) Equation)

For a stochastic process following the form of $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$. The Fokker-Planck (FPK) equation has the form

$$\begin{cases} \frac{\partial u(y,t)}{\partial t} = -\frac{\partial}{\partial y} \left(\mu(y,t) u(y,t) \right) + \frac{1}{2} \frac{\partial^2}{\partial y^2} \left(\sigma^2(y,t) u(y,t) \right), & s < t \\ u(y,s) = p(y) \end{cases}$$
(25)

Then, if $p(y) = \delta_x(y)$, we can derive the transition probability density p(s, x; t, y) through the propagation of Fokker-Planck Equation.

$$\begin{cases}
\frac{\partial p(s,x;t,y)}{\partial t} = -\frac{\partial}{\partial y} \left(\mu(y,t) p(s,x;t,y) \right) + \frac{1}{2} \frac{\partial^2}{\partial y^2} \left(\sigma^2(y,t) p(s,x;t,y) \right), & s < t \\
p(t,x;t,y) = \delta_x(y)
\end{cases} (26)$$

Proof of Fokker-Planck (FPK) equation

Kolmogorov Equations - Kolmogorov Forward Equation

Proof.

According to the definition

$$\frac{d}{dt}\mathbb{E}\left[u(X_{t})|X_{s}\right] = \lim_{\Delta \to 0} \frac{1}{\Delta}\mathbb{E}\left[u(X_{t+\Delta}) - u(X_{t})|X_{s}\right]
= \lim_{\Delta \to 0} \frac{1}{\Delta}\mathbb{E}\left[\mathbb{E}\left[u(X_{t+\Delta}) - u(X_{t})|X_{t}\right]|X_{s}\right]
= \mathbb{E}\left[\mathbb{E}\left[\frac{\partial u(X_{t}, t)}{\partial X_{t}}|X_{t} = x\right]|X_{s}\right]
= \mathbb{E}\left[\mu(s, x)\frac{\partial}{\partial x}u(X_{t}, t) + \frac{1}{2}\sigma^{2}(X_{t}, t)\frac{\partial^{2}}{\partial x^{2}}u(X_{t}, t)|X_{s}\right]$$
(27)

Proof of Fokker-Planck (FPK) equation

Kolmogorov Equations - Kolmogorov Forward Equation

Proof.

$$\frac{d}{dt}\mathbb{E}\left[u(X_t)|X_s=x\right] = \mathbb{E}\left[\mu(s,x)\frac{\partial}{\partial x}u(X_t,t) + \frac{1}{2}\sigma^2(X_t,t)\frac{\partial^2}{\partial x^2}u(X_t,t)|X_s=x\right]$$

$$\int u(y)\frac{\partial p(s,x;t,y)}{\partial t}dy = \int \left[\mu(y,t)\frac{\partial}{\partial y}u(y,t) + \frac{1}{2}\sigma^2(y,t)\frac{\partial^2}{\partial y^2}u(y,t)\right]p(s,x;t,y)dy$$

$$= \int u(y)\left[-\frac{\partial}{\partial y}(\mu(y,t)p(s,x;t,y)) + \frac{1}{2}\frac{\partial^2}{\partial y^2}(\sigma^2(y,t)p(s,x;t,y))\right]dy$$
(27)

which shows that

$$\frac{\partial p(s,x;t,y)}{\partial t} = -\frac{\partial}{\partial v}(\mu(y,t)p(s,x;t,y)) + \frac{1}{2}\frac{\partial^2}{\partial v^2}(\sigma^2(y,t)p(s,x;t,y))$$
(28)

Corollary of Fokker-Planck (FPK) equation

Kolmogorov Equations - Kolmogorov Forward Equation

Corollary (Master Equation.)

If X_0 has density function $p_0(x)$, then the density function p(t,y) of X_t can be get by propagating the Fokker-Planck equation.

$$\begin{cases} \frac{\partial p(t,y)}{\partial t} = -\frac{\partial}{\partial y} \left(\mu(y,t) p(t,y) \right) + \frac{1}{2} \frac{\partial^2}{\partial y^2} \left(\sigma^2(y,t) p(t,y) \right), & s < t \\ p(0,y) = p_0(y) \end{cases}$$
(29)

Proof.

$$\mathbb{E}(f(X_t)) = \mathbb{E}(\mathbb{E}[f(X_t)]|X_0)$$

$$= \int \left[\int f(y)p(0,x;t,y)dy \right] p_0(x)dx$$

$$\int f(y)p(t,y)dy = \int f(y) \left[\int p_0(x)p(0,x;t,y)dx \right] dy$$
(30)

Reverse-time SDE

Kolmogorov Equations - Some Corollaries

Definition. Given the stochastic process $X(\cdot)$: dX = F(X,t)dt + G(X,t)dW and the marginal probability density $p_t(X(t))$ at time t, the reverse-time stochastic process is defined as

$$dX = -\left\{F(X,\tilde{t}) - \nabla \cdot \left[G(X,\tilde{t})G(X,\tilde{t})^T\right] - G(X,\tilde{t})G(X,\tilde{t})^T\nabla_X \log p_{\tilde{t}}(X)\right\}d\tilde{t} + G(X,\tilde{t})d\tilde{V}$$

when n=1 and G(X,t)=G(t)

$$dX = -\left[F(X,\tilde{t}) - G^{2}(\tilde{t})\nabla_{x}\log p_{\tilde{t}}(x)\right]d\tilde{t} + G(\tilde{t})d\tilde{W}$$

where $\tilde{W}(\cdot)$ represents the standard Wiener process when time flows backwards, and $d\tilde{t}$ is an infinitesimal negative timestep from T to 0.

Reverse-time SDE

Kolmogorov Equations - Some Corollaries

Proof. For some stochastic process $X(\cdot)$: dX = F(X,t)dt + G(t)dW, the corresponding Fokker-Planck equation is defined as

$$\frac{\partial p_t(X)}{\partial t} = -\frac{\partial}{\partial x} \left[F(X,t) p_t(X) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[G^2(t) p_t(X) \right]$$

We also define the reverse-time stochastic process $Y(\cdot)$: $dY = F(Y, \tilde{t})dt + G(\tilde{t})d\tilde{W}$, and the corresponding $q_t(Y)$ is defined as

$$\frac{\partial q_t(Y)}{\partial t} = -\frac{\partial p_{T-t}(X)}{\partial t} = \frac{\partial}{\partial x} \left[F(X, T - t) p_{T-t}(X) \right] - \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[G^2(T - t) p_{T-t}(X) \right]
= \frac{\partial}{\partial x} \left[\left(F(X, T - t) - G^2(T - t) \nabla_x \log p_{T-t}(x) \right) p_{T-t}(X) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[G^2(T - t) p_{T-t}(X) \right]
= \frac{\partial}{\partial y} \left[\left(F(X, \tilde{t}) - G^2(\tilde{t}) \nabla_x \log p_{\tilde{t}}(x) \right) q_t(Y) \right] + \frac{1}{2} \frac{\partial^2}{\partial y^2} \left[G^2(\tilde{t}) q_t(Y) \right]$$

then, according the FK equation, we have

$$F(Y, \tilde{t}) = -F(X, \tilde{t}) + G^{2}(\tilde{t})\nabla_{x} \log p_{\tilde{t}}(x), \quad G(t) = G(\tilde{t})$$

Probability ODE Flow

Kolmogorov Equations - Some Corollaries

Definition. For each reverse-time stochastic process, the probabilistic flow ODE can be defined as followed whose trajectories share the marginal probability densities $p_t(X(t))$.

$$dX = -\left\{F(X,\tilde{t}) - \frac{1}{2}\nabla \cdot \left[G(X,\tilde{t})G(X,\tilde{t})^T\right] - \frac{1}{2}G(X,\tilde{t})G(X,\tilde{t})^T\nabla_X \log p_{\tilde{t}}(X)\right\}d\tilde{t}$$

when n=1 and G(X,t)=G(t)

$$dX = -\left[F(X, \tilde{t}) - \frac{1}{2}G^{2}(\tilde{t})\nabla_{x}\log p_{\tilde{t}}(x)\right]d\tilde{t}$$

where $d\tilde{t}$ is an infinitesimal negative timestep from T to 0.

Proof of Probability ODE Flow

Kolmogorov Equations - Some Corollaries

Proof. For some stochastic process $X(\cdot)$: dX = F(X,t)dt + G(t)dW, the corresponding Fokker-Planck equation is defined as

$$\frac{\partial p_t(X)}{\partial t} = -\frac{\partial}{\partial x} \left[F(X, t) p_t(X) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[G^2(t) p_t(X) \right]$$

We also define the reverse-time ode process $Y(\cdot)$: $dY = F(Y, \tilde{t})d\tilde{t}$, and the corresponding $q_t(Y)$ is defined as

$$\frac{\partial q_t(Y)}{\partial t} = -\frac{\partial p_{T-t}(X)}{\partial t} = \frac{\partial}{\partial x} \left[F(X, T - t) p_{T-t}(X) \right] - \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[G^2(T - t) p_{T-t}(X) \right]
= \frac{\partial}{\partial x} \left[\left(F(X, T - t) - \frac{1}{2} G^2(T - t) \nabla_x \log p_{T-t}(x) \right) p_{T-t}(X) \right]
= \frac{\partial}{\partial y} \left[\left(F(X, \tilde{t}) - \frac{1}{2} G^2(\tilde{t}) \nabla_x \log p_{\tilde{t}}(x) \right) q_t(Y) \right]$$

then, according the continuity equation, we have

$$F(Y, \tilde{t}) = -F(X, \tilde{t}) + \frac{1}{2}G^2(\tilde{t})\nabla_x \log p_t(x)$$

Outline

- 1. Probability Space Formalism
- 2. Stochastic Process Formalism
- 3. Itô Calculus

- 4. Kolmogorov Equations
- Generator for Markov Process
 Generator
 Kolmogorov Forward Equation
 Kolmogorov Backward Equation
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

Theorem (Generator Definition)

$$\frac{d}{dh}\Big|_{h=0} \left\langle k_{t+h|t}, f \right\rangle(x) = \lim_{h \to 0} \frac{\left\langle k_{t+h|t}, f \right\rangle(x) - f(x)}{h} \stackrel{\text{def}}{=} \left[\mathcal{L}_t f \right](x) \tag{31}$$

where function f is the integrable test function and $k_{t+h|t}$ represents the transition kernel from time t to time t+h. We can define the linear action $\langle \cdot, \cdot \rangle$ to be

$$\langle p_{t}, f \rangle \stackrel{\text{def}}{=} \int f(x) p_{t}(dx) = \mathbb{E}_{x \sim p_{t}} [f(x)]$$

$$\langle k_{t+h|t}, f \rangle (x) \stackrel{\text{def}}{=} \langle k_{t+h|t}(\cdot|x), f \rangle = \mathbb{E} [f(X_{t+h}) \mid X_{t} = x]$$
(32)

The tower property implies that $\langle p_t, \langle k_{t+h|t}, f \rangle \rangle = \langle p_{t+h}, f \rangle$.

Corollary (Flow)

Given the ODE $dX_t = u(X_t, t)dt$, the generator is

$$[\mathcal{L}_t f](x) = \lim_{h \to 0} \frac{\mathbb{E}[f(X_t + hu_t(X_t) + o(h))|X_t = x] - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{h\nabla f(x)^T u_t(x) + o(h)}{h}$$

$$= \nabla f(x)^T u_t(x)$$
(33)

Generator Example

Generator

Corollary (Diffusion)

Given the SDE $dX_t = \sigma(X_t, t)dB$, the generator is

$$[\mathcal{L}_t f](x) = \lim_{h \to 0} \frac{\mathbb{E}\left[f(X_t + h\sigma_t(X_t)\epsilon_t + o(h))|X_t = x\right] - f(x)}{h}$$

$$= \frac{1}{2}\sigma_t^2(x) \cdot \nabla^2 f(x)$$
(34)

Kolmogorov Forward Equation

Kolmogorov Forward Equation

Theorem (Kolmogorov Forward Equation)

$$\partial_t \langle p_t, f \rangle = \frac{d}{dh} \bigg|_{h=0} \langle p_{t+h}, f \rangle = \left\langle p_t, \frac{d}{dh} \right|_{h=0} \left\langle k_{t+h|t}, f \right\rangle = \left\langle p_t, \mathcal{L}_t f \right\rangle \tag{35}$$

Adjoint KFE

Kolmogorov Forward Equation

Theorem (Adjoint KFE)

Let us define the adjoint generator \mathcal{L}_t^* as

$$\langle p_t, \mathcal{L}_t f \rangle = \langle \mathcal{L}_t^* p_t, f \rangle \tag{36}$$

Then, we have this adjoint Kolmogorov Forward Equation

$$\partial_t p_t(x) = [\mathcal{L}_t^* p_t](x) \tag{37}$$

Proof of Adjoint KFE

Kolmogorov Forward Equation

Proof of Adjoint KFE.

$$\partial_t \langle p_t, f \rangle = \partial_t \int f(x) p_t(dx)$$

$$= \int f(x) \partial_t p_t(dx)$$

$$= \langle p_t, \mathcal{L}_t f \rangle$$

$$= \langle \mathcal{L}_t^* p_t, f \rangle$$

$$= \int f(x) \mathcal{L}_t^* p_t(dx)$$

(38)

Adjoint KFE example

Kolmogorov Forward Equation

Corollary (Flow)

The adjoint generator is $\mathcal{L}_t^* p_t = -\nabla \cdot [u_t(x)p_t(x)]$, which leads to the well-known continuity equation:

$$\partial_t p_t(x) = -\nabla \cdot [u_t(x)p_t(x)] \tag{39}$$

Proof.

$$\langle p_t, \mathcal{L}_t f \rangle = \mathbb{E}_{x \sim p_t} [\mathcal{L}_t f(x)] = \int \mathcal{L}_t f(x) p_t(x) \, dx = \int \nabla f(x)^T u_t(x) p_t(x) \, dx$$

$$= \int f(x) [-\nabla \cdot [u_t(x) p_t(x)]] \, dx$$

$$= \int f(x) [\mathcal{L}_t^* p_t](x) \, dx$$
(40)

Adjoint KFE example

Kolmogorov Forward Equation

Corollary (Diffusion)

The adjoint generator is $\mathcal{L}_t^* p_t = \frac{1}{2} \nabla^2 \cdot [\sigma_t^2(x) p_t(x)]$, which leads to the well-known Fokker-Planck equation:

$$\partial_t p_t(x) = \frac{1}{2} \nabla^2 \cdot [\sigma_t^2(x) p_t(x)] \tag{41}$$

40 / 61

Proof.

$$\langle p_t, \mathcal{L}_t f \rangle = \mathbb{E}_{x \sim p_t} [\mathcal{L}_t f(x)] = \int \mathcal{L}_t f(x) p_t(x) \, dx = \frac{1}{2} \int \sigma_t^2(x) \cdot \nabla^2 f(x) p_t(x) \, dx$$

$$= \frac{1}{2} \int f(x) \nabla^2 \cdot [\sigma_t^2(x) p_t(x)] \, dx$$

$$= \int f(x) [\mathcal{L}_t^* p_t](x) \, dx$$
(42)

Kolmogorov Backward Equation

Kolmogorov Backward Equation

Theorem (Kolmogorov Backward Equation)

$$\frac{\partial}{\partial s} \left\langle k_{t|s}, f \right\rangle (x) = -\mathcal{L}_s \left\langle k_{t|s}, f \right\rangle (x) \tag{43}$$

Proof of Kolmogorov Backward Equation

Kolmogorov Backward Equation

Proof of Kolmogorov Backward Equation.

Let us first expand the transition kernel from $s \to t$ to $s \to s + h \to t$:

$$\left\langle k_{t|s},f
ight
angle \left(x
ight)=\left\langle k_{s+h|s},\left\langle k_{t|s+h},f
ight
angle
ight) \left(x
ight)$$

$$\mathbb{E}\left[f(X_t) \mid X_s = x\right] = \mathbb{E}\left[\left\langle k_{t|s+h}, f \right\rangle (X_{s+h}) \mid X_s = x\right]$$
$$= \mathbb{E}\left[f(X_t) \mid X_s = x\right]$$

Then, take derivative on both side

$$\frac{d}{dh}|_{h=0} \left\langle k_{t|s}, f \right\rangle(x) = \frac{d}{dh}|_{h=0} \left\langle k_{s+h|s}, \left\langle k_{t|s+h}, f \right\rangle\right\rangle(x)
0 = \left[\mathcal{L}_{s} \left\langle k_{t|s}, f \right\rangle\right](x) + \frac{d}{dh}|_{h=0} \left\langle k_{t|s+h}, f \right\rangle(x)
= \mathcal{L}_{s} \left\langle k_{t|s}, f \right\rangle(x) + \frac{\partial}{\partial s} \left\langle k_{t|s}, f \right\rangle(x)$$

42 / 61

(44)

(45)

Proof of Kolmogorov Backward Equation

Kolmogorov Backward Equation

Proof of Kolmogorov Backward Equation.

This concludes that

$$\frac{\partial}{\partial s} \left\langle k_{t|s}, f \right\rangle (x) = -\mathcal{L}_s \left\langle k_{t|s}, f \right\rangle (x) \tag{44}$$

Let
$$u(x,s) = \mathbb{E}[f(X_t)|X_s = x]$$
, this is equivalent to the KBE in section 4.1.

Probability Transition View

Kolmogorov Backward Equation

Remark.

Let p(s, x; t, y) represents the probability transition from time s at x to time t at y. Then the Kolmogorov Forward and Backward Equation can be written as:

$$\frac{\partial}{\partial t}p(s,x;t,\cdot) = +\mathcal{L}_{t}^{*}p(s,x;t,\cdot)
\frac{\partial}{\partial s}p(s,\cdot;t,y) = -\mathcal{L}_{s}p(s,\cdot;t,y)$$
(45)

Outline

- 1. Probability Space Formalism
- 2. Stochastic Process Formalism
- 3. Itô Calculus

- 4. Kolmogorov Equations
- 5. Generator for Markov Process
- Radon-Nikodym Derivative
 Disintegration Theorem
 RN Derivative of Itô Process
- 7. Other Theorems

Radon-Nikodym Derivative

Theorem (Radon-Nikodym Theorem)

Given probability measures \mathbb{P} and \mathbb{Q} , defined on the measurable space (Ω, \mathcal{F}) , there exists a measurable function $\frac{d\mathbb{P}}{d\mathbb{O}}: \Omega \to [0, \infty)$, and for any set $A \subseteq \mathcal{F}$:

$$\mathbb{P}(A) = \int_{A} \frac{d\mathbb{P}}{d\mathbb{Q}}(x) \, d\mathbb{Q}(x), \tag{46}$$

where the function $\frac{d\mathbb{P}}{d\mathbb{O}}(x)$ is known as the RN-derivative.

A direct consequence of this result is

$$\int_{A} f(x) d\mathbb{P}(x) = \int_{A} f(x) \frac{d\mathbb{P}}{d\mathbb{Q}}(x) d\mathbb{Q}(x). \tag{47}$$

Disintegration Theorem

Radon-Nikodym Derivative - Disintegration Theorem

Theorem (Disintegration Theorem)

Disintegration Theorem for continuous probability measures: For a probability space

 $Z, \mathcal{B}(Z), \mathbb{P}$ where Z is a product space: $Z = Z_x \times Z_y$, and

- $ightharpoonup Z_x \subseteq \mathbb{R}^d$, $Z_y \subseteq \mathbb{R}^d$,
- $\pi_i: Z \to Z_i$ is a measurable function known as the canonical projection operator (i.e., $\pi_x(z_x, z_y) = z_x$ and $\pi_x^{-1}(z_x) = \{y | \pi_x(z_x) = z\}$),

there exists a measure $\mathbb{P}_{y|x}(\cdot|x)$, such that

$$\int_{Z_x \times Z_y} f(x, y) d\mathbb{P}(y) = \int_{Z_x} \int_{Z_y} f(x, y) d\mathbb{P}_{y|x}(y|x) d\mathbb{P}(\pi_x^{-1}(x))$$
(48)

where $\mathbb{P}_{x}(\cdot) = \mathbb{P}(\pi^{-1}(\cdot))$ is a probability measure, typically referred to as a pullback measure, and corresponds to the marginal distribution.

Disintegration Theorem

Radon-Nikodym Derivative - Disintegration Theorem

Corollary

The disintegration theorem implies a very interesting corollary as:

$$\frac{d\mathbb{P}}{d\mathbb{Q}}(x,y) = \frac{d\mathbb{P}_{y|x}}{d\mathbb{Q}_{y|x}}(y)\frac{d\mathbb{P}_x}{d\mathbb{Q}_x}(x)$$
(49)

Remarks.

The disintegration theorem can be seen as the conditional probability on measure space.

Path Measure

Radon-Nikodym Derivative - RN Derivative of Itô Process

Definition (Path Measure)

For an Itô process of the form $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$ defined in [0, T], we call $\mathbb P$ the path measure of the above process, with outcome space $\Omega = C([0, T], \mathbb R^d)$, if the distribution $\mathbb P$ describes a weak solution to the above SDE.

RN Derivative of Itô Process

Radon-Nikodym Derivative - RN Derivative of Itô Process

Theorem (Girsanov Theorem)

Given two Itô processes with the same constant volatility: $dX_t = \mu_1(t, X_t) dt + \sigma dW_t$ and $dY_t = \mu_2(t, X_t) dt + \sigma dW_t$, the RN derivative of their respective path measures \mathbb{P}, \mathbb{Q} is given by

$$\frac{d\mathbb{P}}{d\mathbb{Q}}(\cdot) = \exp\left(-\frac{1}{2\sigma^2} \int_0^t \|\mu_1(s,\cdot) - \mu_2(s,\cdot)\|^2 ds + \frac{1}{\sigma^2} \int_0^t (\mu_1(s,\cdot) - \mu_2(s,\cdot))^\top dW_s\right)$$
(50)

where the type signature of this RN derivative is $\frac{d\mathbb{P}}{d\mathbb{O}}$: $C(T, \mathbb{R}^d) \to \mathbb{R}$.

Outline

- 1. Probability Space Formalism
- 2. Stochastic Process Formalism
- 3. Itô Calculus

- 4. Kolmogorov Equations
- 5. Generator for Markov Process
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

Feynman-Kac Formulation
Nonlinear Feynman-Kac Lemma
Doob's h-transform
Nelson's Duality
Expected Grad-Log-Prob Lemma
Others

Feynman-Kac Formulation (Discounting)

Other Theorems

Theorem (Feynman-Kac Formulation [Discounting])

For a stochastic process following the form of $dX_t = \mu_1(t, X_t) dt + \sigma dW_t$. If u(x, t) satisfies the form

$$\begin{cases} \frac{\partial u(x,t)}{\partial t} + \mu(x,t) \frac{\partial u(x,t)}{\partial x} + \frac{1}{2} \sigma^2(x,t) \frac{\partial^2 u(x,t)}{\partial x^2} - q(x,t) u(x,t) = -g(x,t) \\ u(x,T) = f(x) \end{cases}$$
(51)

Then, Feynman-Kac Formulation tells us that under the Wiener process $dX_t = dW_t$

$$u(x,t) = \mathbb{E}\left[f(\xi_T)e^{-\int_t^T q(\theta,\xi_\theta)d\theta} + \int_t^T g(s,\xi_s)e^{-\int_t^T q(\theta,\xi_\theta)d\theta}ds | \xi_t = x\right]$$
(52)

Proof of Feynman-Kac Formulation

Other Theorems

Proof.

Recall the Itô formula

$$du(\xi_{s}, s) = \left(\frac{\partial u(\xi_{s}, s)}{\partial s} + \mu(\xi_{s}, s)\frac{\partial u(\xi_{s}, s)}{\partial x} + \frac{1}{2}\sigma^{2}(\xi_{s}, s)\frac{\partial^{2} u(\xi_{s}, s)}{\partial x^{2}}\right)ds$$

$$+ \frac{\partial u(\xi_{s}, s)}{\partial x}\sigma(\xi_{s}, s)dW_{t}$$

$$= q(\xi_{s}, s)u(\xi_{s}, s)ds - g(\xi_{s}, s)ds + \frac{\partial u(\xi_{s}, s)}{\partial x}\sigma(\xi_{s}, s)dW_{s}$$
(53)

Proof of Feynman-Kac Formulation

Other Theorems

Proof.

multiplying both sides of the above equation by the integrating factor $e^{-\int_t^s q(\xi_\theta, \theta) d\theta}$, and using the Itô formula, we have

$$d\left(u(\xi_{s},s)e^{-\int_{t}^{s}q(\xi_{\theta},\theta)d\theta}\right) = -q(\xi_{s},s)e^{-\int_{t}^{s}q(x_{\theta},\theta)d\theta}u(\xi_{s},s)ds + e^{-\int_{t}^{s}q(\xi_{\theta},\theta)d\theta}du(\xi_{s},s)$$

$$= e^{-\int_{t}^{s}q(\xi_{\theta},\theta)d\theta}\left(-g(\xi_{s},s)ds + \frac{\partial u(\xi_{s},s)}{\partial x}\sigma(\xi_{s},s)dW_{s}\right)$$
(53)

Substituting the initial time t and terminal time T, we obtain

$$u(t,\xi_t) = f(\xi_T)e^{-\int_t^T q(\xi_\theta,\theta)d\theta} + \int_t^T e^{-\int_t^s q(\xi_\theta,\theta)d\theta} \left(g(\xi_s,s)ds - \frac{\partial u(\xi_s,s)}{\partial x}\sigma(\xi_s,s)dW_s\right).$$

Taking the expectation $\mathbb{E}(\cdot \mid \xi_t = x)$ over Wiener process yields the desired result.

Feynman-Kac Formulation (Non-Discounting)

Other Theorems

Theorem (Feynman-Kac Formulation [Non-Discounting])

For a stochastic process following the form of $dX_t = \mu(t, X_t) dt + \sigma dW_t$. If u(x, t) satisfies the form

$$\begin{cases} \frac{\partial u(x,t)}{\partial t} + \mu(x,t) \frac{\partial u(x,t)}{\partial x} + \frac{1}{2} \sigma^2(x,t) \frac{\partial^2 u(x,t)}{\partial x^2} = -g(x,t) \\ u(x,T) = f(x) \end{cases}$$
(54)

Then, Feynman-Kac Formulation tells us that

$$u(x,t) = \mathbb{E}\left[f(\xi_T) + \int_t^T g(s,\xi_s)ds | \xi_t = x\right]$$
 (55)

Proof of Feynman-Kac Formulation

Other Theorems

Proof.

Recall the Itô formula

$$du(\xi_{s}, s) = \left(\frac{\partial u(\xi_{s}, s)}{\partial s} + \mu(\xi_{s}, s)\frac{\partial u(\xi_{s}, s)}{\partial x} + \frac{1}{2}\sigma^{2}(\xi_{s}, s)\frac{\partial^{2} u(\xi_{s}, s)}{\partial x^{2}}\right)ds$$

$$+ \frac{\partial u(\xi_{s}, s)}{\partial x}\sigma(\xi_{s}, s)dW_{t}$$

$$= -g(\xi_{s}, s)ds + \frac{\partial u(\xi_{s}, s)}{\partial x}\sigma(\xi_{s}, s)dW_{s}$$
(56)

Proof of Feynman-Kac Formulation

Other Theorems

Proof.

Then, integrate the u(x, t) from time t at x to the terminal time T, we get

$$u(x,t) = \mathbb{E}\left[f(\xi_T) + \int_t^T g(s,\xi_s)ds|\xi_t = x\right]$$
 (56)

54 / 61

Nonlinear Feynman-Kac Lemma

Other Theorems

Theorem (Nonlinear Feynman-Kac Lemma)

Given the non-linear extension of Feynman-Kac PDE

$$\begin{cases} \frac{\partial u(x,t)}{\partial t} + \mu(x,t) \frac{\partial u(x,t)}{\partial x} + \frac{1}{2}\sigma^2(x,t) \frac{\partial^2 u(x,t)}{\partial x^2} = -g(x,t,u,\nabla u) \\ u(x,T) = f(x) \end{cases}$$
(57)

and the Forward-Backward Differential Equation

$$\begin{cases}
dX_t = \mu(t, X_t) dt + \sigma dW_t, X_0 = x_0 \\
dY_t = -g(x, t, u, \nabla u) dt + Z_t \cdot dW_t, Y_T = f(X_T)
\end{cases}$$
(58)

If the PDE has unique solution, then we have

$$u(X_t, t) = Y_t, \, \sigma \nabla u = Z_t \tag{59}$$

Doob's h-transform

Other Theorems

Given a process X_t that solves $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$ and assuming that we want to condition its solution to hit X_T at time t = T, then the h-transform provides us with the following SDE for the conditioned process:

$$dX = [\mu(t, X_t) + \sigma(t, X_t)Q\sigma(t, X_t)\nabla \log p(X_T \mid X_t)] dt + \sigma(t, X_t)dW_t,$$

Nelson's Duality

Other Theorems

Let us define a forward process X_t that solves $dX_t = \mu_+(t, X_t) dt + \sigma(t, X_t) dW_t$ and a backward process $X_{\tilde{t}}$ that solves $dX_{\tilde{t}} = \mu_-(\tilde{t}, X_{\tilde{t}}) d\tilde{t} + \sigma(\tilde{t}, X_{\tilde{t}}) dW_{\tilde{t}}$. We can also define the corresponding probability measure as $p_t(x)$ and $p_{\tilde{t}}(x)$ respectively. Then, if $p_{T-t}(x) = p_{\tilde{t}}(x)$. The Nelson's Duality tells us that

$$\mu_{+}(t,x) + \mu_{-}(\tilde{t},x) = \sigma^{2} \nabla_{x} \log p_{\tilde{t}}(x) = \sigma^{2} \nabla_{x} \log p_{t}(x)$$
(60)

Expected Grad-Log-Prob Lemma

Other Theorems

Suppose that P_{θ} is a parameterized probability distribution over a random variable x.

$$\mathbb{E}_{x \sim P_{\theta}}[\nabla_{\theta} \log P_{\theta}(x)] = 0 \tag{61}$$

Proof.

$$\nabla_{\theta} \int_{x} P_{\theta}(x) = \nabla_{\theta} 1 = 0$$

$$\int_{x} \nabla_{\theta} P_{\theta}(x) = 0$$

$$\int_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) = 0$$

$$\mathbb{E}_{x \sim P_{\theta}} [\nabla_{\theta} \log P_{\theta}(x)] = 0$$
(62)

For any point $x \in \mathbb{R}^d$ such that $p(x) \neq 0$, it holds that

$$\frac{1}{p(x)} \Delta p(x) = \frac{1}{p(x)} \nabla \cdot \nabla p(x) = \frac{1}{p(x)} \nabla \cdot (p(x) \nabla \log p(x))$$

$$= \frac{1}{p(x)} (\nabla p(x) \cdot \nabla \log p(x) + p(x) \Delta \log p(x))$$

$$= \|\nabla \log p(x)\|^2 + \Delta \log p(x)$$
(63)

Others

Other Theorems

Under mild assumptions such that all distributions approach zero at a sufficient speed as $||x|| \to \infty$, and that all integrands are bounded, we have

$$\mathbb{E}_{x \sim p(x)} \left[\Delta \log q(x) \right] = \mathbb{E}_{x \sim p(x)} \left[\nabla \cdot \nabla \log q(x) \right] = \mathbb{E}_{x \sim p(x)} \left[-\nabla \log p(x) \cdot \nabla \log q(x) \right]$$
(64)

where the second equality follows by integration by parts and reparameterization trick

$$\int p(x) \left(\nabla \cdot \nabla \log q(x) \right) dx = \int -\left(\nabla p(x) \cdot \nabla \log q(x) \right) dx$$

$$= \int -p(x) \left(\nabla \log p(x) \cdot \nabla \log q(x) \right) dx.$$
(65)

More generally, under the same regularity, it holds for a vector field $Z:\mathbb{R}^d o \mathbb{R}^d$ that

$$\mathbb{E}_{x \sim p(x)} \left[\nabla \cdot Z(x) \right] = \mathbb{E}_{x \sim p(x)} \left[-\nabla \log p(x) \cdot Z(x) \right]. \tag{66}$$

Reference

- ► Applied Stochastic Calculus
- ► Topics in Mathematics with Applications in Finance
- ► Machine-learning approaches for the empirical Schrodinger bridge problem
- ► AN INTRODUCTION TO STOCHASTIC DIFFERENTIAL EQUATIONS