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Neural Ordinary Differential Equations
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Forward Process
Given a neural network f parameterised by
θ, the neural ode can be defined as:

dz(ti )

dt
= fθ(z(ti ), ti ), z(t0) = z0 (1)

Euler Discretization

z(ti+1) = z(ti ) + fθ(z(ti ), ti )∆t (2)

Implicit Discretization

z(ti+1) = z(ti ) + fθ(z(ti+1), ti+1)∆t (3)
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Backward Process
Given a predefine objective function L(z(tN)), the
auto back-propagate has high memory cost. Chen
et al.a proposes an adjoint method which solves a
reverse ODE to get the ∂L

∂θ .

∂L

∂θ
=

∫ tN

t0

(
− ∂L

∂z(t)

⊤∂fθ(z(t), t)

∂θ

)
dt (4)

Adjoint Method

da(ti )

dt
= −a(ti )

⊤∂fθ(z(ti ), ti )

z(ti )
, a(tN) =

∂L

∂z(tN)
(5)

achen2018neural.
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Forward Propagation

z(tN) = ODESolver (fθ(z(t), t), z(t0), t0, tN) (6)

Backward Propagation

z(t0) =ODESolver (fθ(z(t), t), z(tN), tN , t0)

a(t0) =
∂L

∂z(t0)
=ODESolver

(
−a(t)⊤

∂fθ(z(t), t)

∂z
,

∂L

∂z(tN)
, tN , t0

)
∂L

∂θ
=ODESolver

(
−a(t)⊤

∂fθ(z(t), t)

∂θ
, 0, tN , t0

) (7)
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Remark.

Neural ODEs describe a
homeomorphism (flow). They
preserve dimensionality. They form
non-intersecting trajectories.
Neural ODEs are reversible
models.

Example Neural ODE
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Instantaneous Change of Variables
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Theorem (Instantaneous Change of Variables)

Let xt be a finite continuous random variable with probability ρ(xt) dependent on
time. Let dxt

dt = fθ(xt , t) be a differential equation describing a continuous-in-time
transformation of xt . Asssuming that f is uniformly Lipschitz continuous in x and
continuous in t, then the change in log probability also follows a differential equation,

d

dt
log ρ(xt , t) = −∇ · fθ(xt , t) (8)
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Lemma (Continuity Equation)

Definition. Let ρ(xt , t) denotes the evolving probabilistic measure following the
differential equation dxt

dt = fθ(xt , t) and fθ(xt , t) represents the velocity field. The
continuity equation describes the relationship between flow field and probabilistic
measure as:

∂ρ(xt , t)

∂t
+∇ · (fθ(xt , t)ρ(xt , t)) = 0 (9)

Proof.

d

dt
log ρ(xt , t) =

∇ρ(xt , t) · ẋt + ∂tρ(xt , t)

ρ(xt , t)

= −∇ρ(xt , t) · fθ(xt , t)−∇ · (fθ(xt , t)ρ(xt , t))
ρ(xt , t)

= −∇ · fθ(xt , t)

(10)
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FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
Models1

A promising class of generative models maps points from a simple distribution to a
complex distribution through an invertible neural network. Likelihood-based training of
these models requires restricting their architectures to allow cheap computation of
Jacobian determinants. Alternatively, the Jacobian trace can be used if the
transformation is specified by an ordinary differential equation. In this paper, we use
Hutchinson’s trace estimator to give a scalable unbiased estimate of the log-density.
The result is a continuous-time invertible generative model with unbiased density
estimation and one-pass sampling, while allowing unrestricted neural network
architectures. We demonstrate our approach on high-dimensional density estimation,
image generation, and variational inference, achieving the state-of-the-art among exact
likelihood methods with efficient sampling

1grathwohl2018ffjord.
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Hutchinson’s trace estimator
Hutchinson’s trace estimator is the unbiased Monte Carlo
trace estimator defined as:

Tr(A) = Eϵ

[
ϵ⊤Aϵ

]
s.t.E [ϵ] = 0,Cov(ϵ) = I.

(11)
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How to train your neural ODE: the world of Jacobian and kinetic regularization2

Training neural ODEs on large datasets has not been tractable due to the necessity of
allowing the adaptive numerical ODE solver to refine its step size to very small values.
In practice this leads to dynamics equivalent to many hundreds or even thousands of
layers. In this paper, we overcome this apparent difficulty by introducing a
theoretically-grounded combination of both optimal transport and stability
regularizations which encourage neural ODEs to prefer simpler dynamics out of all the
dynamics that solve a problem well. Simpler dynamics lead to faster convergence and
to fewer discretizations of the solver, considerably decreasing wall-clock time without
loss in performance. Our approach allows us to train neural ODE-based generative
models to the same performance as the unregularized dynamics, with significant
reductions in training time. This brings neural ODEs closer to practical relevance in
large-scale applications.

2finlay2020train.
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Kinetic Energy Regularization

K(θ) =

∫ 1

0
∥fθ(xt , t)∥22dt (12)

Jacobian Norm Regularization

B(θ) = Eϵ

∫ 1

0

∥∥∥ϵ⊤∇fθ(xt , t)
∥∥∥2
2
dt (13)
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STEER: Simple Temporal Regularization For Neural ODEs3

Training Neural Ordinary Differential Equations (ODEs) is often computationally
expensive. Indeed, computing the forward pass of such models involves solving an
ODE which can become arbitrarily complex during training. Recent works have shown
that regularizing the dynamics of the ODE can partially alleviate this. In this paper we
propose a new regularization technique: randomly sampling the end time of the ODE
during training. The proposed regularization is simple to implement, has negligible
overhead and is effective across a wide variety of tasks. Further, the technique is
orthogonal to several other methods proposed to regularize the dynamics of ODEs and
as such can be used in conjunction with them. We show through experiments on
normalizing flows, time series models and image recognition that the proposed
regularization can significantly decrease training time and even improve performance
over baseline models.

3ghosh2020steer.
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Temporal Regularization

x1 = x0 +

∫ T

0
fθ(xt , t) dt

T ∼ Uniform(1− b, 1 + b), b < 1
(14)
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OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal
Transport4
A normalizing flow is an invertible mapping between an arbitrary probability distribution and a standard normal
distribution; it can be used for density estimation and statistical inference. Computing the flow follows the
change of variables formula and thus requires invertibility of the mapping and an efficient way to compute the
determinant of its Jacobian. To satisfy these requirements, normalizing flows typically consist of carefully
chosen components. Continuous normalizing flows (CNFs) are mappings obtained by solving a neural ordinary
differential equation (ODE). The neural ODE’s dynamics can be chosen almost arbitrarily while ensuring
invertibility. Moreover, the log-determinant of the flow’s Jacobian can be obtained by integrating the trace of
the dynamics’ Jacobian along the flow. Our proposed OT-Flow approach tackles two critical computational
challenges that limit a more widespread use of CNFs. First, OT-Flow leverages optimal transport (OT) theory
to regularize the CNF and enforce straight trajectories that are easier to integrate. Second, OT-Flow features
exact trace computation with time complexity equal to trace estimators used in existing CNFs. On five
high-dimensional density estimation and generative modeling tasks, OT-Flow performs competitively to
state-of-the-art CNFs while on average requiring one-fourth of the number of weights with an 8x speedup in
training time and 24x speedup in inference.

4onken2021ot.
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Potential Regularization
From the Pontragin Maximum Principle, there exists a
potential function Φ such that
fθ(z(ti ), ti ) = −∇Φθ(z(ti ), ti ). Moreover, optimal control
theory states that Φ satisfies

−∂tΦθ(z(ti ), ti ) +
1

2
∥∇Φθ(z(ti ), ti )∥2 = 0 (15)

Then, we can define the potential regularization

R(θ) =

∫ T

0

∣∣∣∣∂tΦθ(z(ti ), ti ) +
1

2
∥∇Φθ(z(ti ), ti )∥2

∣∣∣∣ dt (16)
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