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Calculus of Variations

From Calculus of Variations to Optimal Control

Definition (Calculus of Variations)

Let X denotes some infinite dimensional space, a calculus of variations problem can be
defined as:

b
xlgﬁ(j[x] = /a L(u, x(u),x"(u))du (1)
x = {x(u) : u € [a, b]}

where J[x] : X — R is the functional integrating from time u = a to time u = b,
L(u, x(u), x'(u)) defines the Lagrangian cost (e.g. L = ||x'(u)]|3) and x defines the
general curve indexed by time u.
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Euler-Lagrange Equations

From Calculus of Variations to Optimal Control

Theorem (Euler-Lagrange Equations)

Let x be an extremum of Eq. 1. Then, x satisfies the Euler-Lagrange Equations:

O L(u, x(u),x'(u)) = %BX/L(U,X(U),X'(U)), u € [a, b]. (2)
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Proof of Euler-Lagrange Equations

From Calculus of Variations to Optimal Control

Proof.
Let us firstly Taylor expands the functional J[x] as

0J = / (—5u+ —5u) dt

The term involving d4 can be integrated by parts. Recall that du = %((M), so:

oL oL oL
/38_6 dt = [acSL—/a dt<8)5 dt

Assume that the variations du(t) vanish at the endpoints, i.e., du(a) = du(b) = 0.

- (3 5(2) e
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Proof of Euler-Lagrange Equations

From Calculus of Variations to Optimal Control

Proof.

If we want the variation 6.7 reduces to 0, we have to let the integration part to be 0 as:

oL_d (oL
Ju dt\ou)
This is the Euler-Lagrange equation:

DL (u, x(u), X' (1)) = %(‘L:L(u,x(u),x'(u)), uelab]. (3)
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Differential Dynamics

From Calculus of Variations to Optimal Control

Definition (Differential Dynamics defined by ODE)

Let t denotes the system time, x(t) € R? denotes the state, 8(t) € © C R™ denotes
the control signal, we can define a trajectory defined by the following ODE:

x(t) = f(t,x(t),0(t)), t € [to, t1], x(to) = X0, (4)

where xg denotes the given starting state.
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The Bolza Problem of Optimal Control

From Calculus of Variations to Optimal Control

Definition (The Bolza Problem of Optimal Control)

5%
inf 710] = / L(t, x(£), 0())dt + S(tr, x(t1))
0 to (5)
s.t. x(t) = f(¢t,x(t),0(t)), t € [to, t1], x(to) = X0,
where L : R xRY x © — R and ¢ : R x RY — R are called the running cost and
the terminal cost, respectively.

Remark.

For historical reasons, the case where ® = 0 (no terminal cost) is called a Lagrange
problem, where as the case with L = 0 (no running cost) is called a Mayer problem.
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Pontryagin’s Maximum Principle (PMP)
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The Maximum Principle

Pontryagin’s Maximum Principle (PMP)

Definition (Hamiltonian)

Let us define the Hamiltonian functional H: R x RY x R x ® — R as:

H(t,x,p,0) =p' f(t,x,0)— L(t,x,0) (6)

Theorem (Pontryagin's Maximum Principle)

Let 8* be a bounded, measurable and admissible control, and x* be its corresponding
state. Then, there exists an a.c. process p* = {p*(t) : t € [to, t1]} such that

x*(t) = VpH(t,x*(t),p*(t), 07(¢)), x'(to)
p*(t) = —VxH(t,x*(t),p™(2), 0°(¢)), p*(t1) = —Vx¢(x (t1)) (7)
H(t,x*(t),p"(t),0%(t)) > H(t,x*(t),p*(t),0(t)), VO € © andt € [to, t1]
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Some Remarks about the PMP

Pontryagin’s Maximum Principle (PMP)

Remark.
Pontryagin's Maximum Principle(PMP) can be treated as the necessary condition for
optimality. The co-state p is to propagate back the optimality condition and is the
adjoint of the variational equation. In fact, one can also connect the co-state formally
to a Lagrange multiplier enforcing the constraint of the ODE. One can regard the
PMP as a nontrivial generalization of the Euler-Lagrange equations to handle strong
extrema, as well as a generalization of the KKT conditions to non-smooth settings.
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Proof of the PMP

Pontryagin’s Maximum Principle (PMP)

Lemma (Dependence on Initial Condition)

Given the time-inhomogeneous ODE as
x(t) = f(£,x(t)),  x(0) = xo, (8)
we can define the permutation v as the solution to the initial permutation vq:

v(s) = Vif(s,x(s))v(s), v(0) = vo. (9)
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Proof of the PMP
Pontryagin’s Maximum Principle (PMP)

Proof.

Stepl: Convert to Mayer Problem.
By going one dimension higher we can rewrite Eq. 5 as the Mayer problem

inf 7[0] = &(t1, x(t1)) + y(t1), € [to. 1],
s.t. x(t) = £(t,x(¢), 0(¢)), x(to) = Xo, (10)
y(t) = L(t, x(t), 6(¢)), y(t0) = 0.
For the simplicity, we will only consider this general Mayer problem.
|r61’fj[0] = &)(tl,)_((tl)), te [i‘()7 tl],

: - (11)
s.t. x(t) = f(¢t,%(t),0(t)),X(to) = Xo.
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Proof of the PMP

Pontryagin’s Maximum Principle (PMP)

Proof.

Step 2: Needle Perturbation.
Fix 7 > 0 and an admissible control s € ©. Define the needle perturbation to the
optimal control

o=~ rrelrer (10)
0*(t), otherwise

Let x(t) be the corresponding controlled trajectory, i.e., the solution of
xe(t) = (£, %c(t),0c(t)),  xe(t0) = xo. (11)

Our goal is to derive necessary conditions for which any such needle perturbation will
be sub-optimal, thus resulting in a necessary condition for a strong minimum in the
cost functional.
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Proof of the PMP

Pontryagin’s Maximum Principle (PMP)

Proof.

Step 3: Variational Equation.
It is clear that x.(t) = x*(t) for t < 7 — €. Let us define, for t > 7

xe(t) — x*(t)
v(t lim —————=. 10
(t):= =0+ € (10)
This measures the propagation of the effect of the needle perturbation as time
increases. In particular, at t = 7, v(7) is the tangent vector of the curve € — x.(7),
given by

v(r) = lim (% /T_ f(t,xe(t),s)dt—%/T; f(t,x*(t),O*(t))dt)

e—07T

= f(1,x*(7),s) — f(1,x(7),0"(7)).

(11)
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Proof of the PMP

Pontryagin’s Maximum Principle (PMP)

Proof.
For the remaining time t € [, t1], X follows the same ODE in Eq. 9.

v(t) = Vif(t,x*(t),0%(t))v(t), te]r t], (10)

with initial condition given by v(7). In particular, the vector v(t;) describes the
variation in the end point x.(t;) due to the needle perturbation v(7).
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Proof of the PMP

Pontryagin’s Maximum Principle (PMP)

Proof.

Step 4: Optimality Condition at End Point.
By our assumption, the control 8* is optimal, hence we must have

O(x*(t1)) < O(x(t1))- (10)
Thus, we have

o<l POx(t) = (1)

e—0t €

:%d)(xs(tl)) = VoO(x(t)) - v(t). (1)

e=0+

In fact, the inequality (2.28) holds for any 7 and s that characterizes the needle
perturbation.
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Proof of the PMP
Pontryagin’s Maximum Principle (PMP)

Proof.

Step 5: The Adjoint Equation and the Maximum Principle.
To this end, we define p*(t) as the solution of the backward Cauchy problem

P (1) = —Vxf(t,x"(£),67(1)) p*(t), P*(tr) = —VO(x*(tr)). (10)
Then, observe that we indeed have
%[P*(t)TV(f)] =0 Vte[rn] = p*(r) v(r) =p" () 'v(ts) <0, (11)
which implies that for any 7 € (to, t;] we have
[p* (7] f(7,x*(7),8) > [p*(7)] ' f(7,%"(7),67(r)) V¥se®O. (12)

By continuity this also holds for t = t;.
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Proof of the PMP
Pontryagin’s Maximum Principle (PMP)

Proof.

By undoing the conversion in Step 1, we can go back to a general Bolza problem by
sending p* — (p*, py). In particular, observe that pj(t1) = —1 and

py(t) = —VyL(t,x(t),B(t))Tp;(t) = 0. Hence, pj(t) = —1. Hence, we get from the
optimality condition that

p(7) F(7,x*(7), 0%(7)) — L(7,x"(7), 67 (7)) = p*(7) " F(7,x*(7),8) — L(7,x(7),5),

(10)

where p* satisfies the adjoint equation
p'(t) = =VxH(t,x*(t),p"(t), 07(1)), p*(t1) = =VO(x*(t1)). (11)
O
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Dynamic Programming Principle (DPP)
The Dynamic Programming Principle
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14 /26



The Dynamic Programming Principle

Dynamic Programming Principle (DPP)

Definition (Value Function)

The value function V : [to, t1] x RY — R is the minimum cost attainable starting
from the initial state z at time s.

V(s,z) = igf/stl L(t,x(t),0(t))dt + d(t1,x(t1))

(12)
s.t. x(t) = f(t,x(t),0(t)),t € [s, t1],x(s) = 2,
Theorem (Dynamic Programming Principle)
For every 7,s € [to, t1],s < 7, and z € RY, we have
V(s.2) = inf { / L(t,x(t), 0(t))dt + V(T,x(T))} )

s.t. x(t) = f(t,x(t),0(t)), t € [s, 7], x(s) = 2,
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Some Remarks about the DPP

Dynamic Programming Principle (DPP)

The meaning of the DPP is that the optimization problem defining V/(s,z) can be split
into two parts:

1. First, solve the optimization problem on [7, t;] with the usual running cost L and
terminal cost ©, but for all initial state z € R?. This gives us the value function
V(r,-).

2. Second, solve the optimization problem on [s, 7] with running cost L and terminal
cost V/(,-) given by the step before.
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Hamilton-Jacobi-Bellman Equations

Hamilton-Jacobi-Bellman Equations (HJB)

Theorem (Hamilton-Jacobi-Bellman Equations)

The value function V in Eq. 12 is the unique viscosity solution of the
Hamilton-Jacobi-Bellman equation

OV(tx) + inf {L(t,x, 0) + [V V(t,%)] f(t,x, 9)} =0
V(t1,x) = d(x), (t,x) € [to, 1] x RY

(14)

Remark.

HJB equation establishes the necessary and sufficient conditions for optimal control
problem. Provided we can solve the HJB, the optimal control solution is of feed-back
or closed-loop form, meaning that it tells how to steer the system by just observing the
state trajectory. We can contrast with the PMP, where we obtain open-loop controls
that are pre-computed and cannot be applied on-the-fly.
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Proof of HJB Equations
Hamilton-Jacobi-Bellman Equations (HJB)

Proof.

To begin with, we can derive the infinitesimal version of the dynamic programming
principle defined in Eq. 13. Let 7 = s + As, then
s+As
V(s.2) = inf { / L(t, x(¢), B(£))dt + V(s + As, x(s + As))}
S
S igf {L(s,2,0(s))As + V(s + As,x(s + As))}
~ inf{L(s,2,0(s))As + V(s,x(5)) (15)

+ sV (s,2)As + [V, V(s,2)] f(s,z,0(s))As}
x(t) = f(t,x(t),0(t)), tels, 7], x(s)=z
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Proof of HJB Equations
Hamilton-Jacobi-Bellman Equations (HJB)

Proof.

After cancelling the term V/(s,z) on both slides and taking the limit As — 0, the
infimum over paths @ on t € [s, s + As] becomes an infimum over a scalar § = 6(s),
thus we obtain the Hamilton-Jacobi-Bellman equation for the value function.

0=0sV(s,z) + iréf {L(s, z,0(s)) + [V, V (s, z)]Tf(s, z, 0(5))} (15)

Then, combine with the boundary condition V/(t1,x) = ®(x), we can result the full
HJB equations. O
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The Necessary Condition

Dynamic Programming Principle (DPP)

Proof.
By the assumption of global optimality, we can perform Taylor expanding and
comparing with the usual dynamic programming principle as:

—0:V(t,x") = inf {L(t,x*, 0) + [V V(t,x*)] T f(t, x*,e)}

(16)
= L(t,x*,0°) + [V V(t,x")]" £(t,x*,6%)
Then, recall the Hamiltonian formulation as
H(t,x,p,0) =p' f(t,x,0) — L(t,x,0) (17)
Finally, we can rewrite it as a similar statement of th PMP
H(t,x*, =V V(t,x"),0%) = max H(t,x*, =V V(t,x*),0) (18)
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The Sufficient Condition

Dynamic Programming Principle (DPP)

Proof.

Let us now assume that a continuously differentiable function V satisfies the HJB
equation and moreover that a control 0 : [tp, t1] — © satisfies

H(t,%(t), =V V(t,%(t)), (1)) = max H(t,x(t), —VxV(t,%x(t)),0), (19)

for all t € [to, t1], where X(t) is the state process corresponding to the control @, then
0 is a globally optimal control that solves the dynamic programming principle with
optimal cost V/(tg, xo).

To show this, observe that if we set x = X(t) in the HJB equation for V/, noting the
condition, we have

OV (£, %(1)) + [V V (£, %(t))]T (£, (1), B(t)) + L(t,%(t),0(t)) =0,  (20)
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The Sufficient Condition

Dynamic Programming Principle (DPP)

Proof.
which means d
2 V(EX(0) + L(t,%(1),8(1)) = 0. (19)

Integrating from tp to t; and using the boundary condition V/(t1,x) = ®(x), we have

V(to, x0) = / ! L(t,%(t),0(t))dt + d(x(t1)) = J[A). (20)

to

On the other hand, if 6 be any other control whose trajectory is x, we would have

DV (t,x()) + [V V(t,x(£))]T £(t,x(t), 0(t)) + L(t,x(t),0(t)) >0,  (21)
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The Sufficient Condition

Dynamic Programming Principle (DPP)

Proof.
which yields .
0< / L(t,x(£), 8(8))dt + V(t1,x(1)) — V(0. %0), (19)
J[6] = V(to, x0) < J[6]. (20)

This shows that @ is globally optimal, with cost V/(to, xo).
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Model Predictive Control
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Theorems
Take Home Messages

Theorem (Euler-Lagrange Equations)

Let x be an extremum of Eq. 1. Then, x satisfies the Euler-Lagrange Equations:
d
OxL(u,x(u),x'(u)) = aale(u,x(u),x’(u)), u € [a, b]. (21)

Theorem (Pontryagin's Maximum Principle)

Let 0* be a bounded, measurable and admissible control, and x* be its corresponding
state. Then, there exists an a.c. process p* = {p*(t) : t € [to, t1]} such that

x*(t) = VpH(t,x*(t), p*(2),07(t)),  x"(t0) = %o
p*(t) = —VxH(t,x*(t),p" (1), 0°(t)), p*(t1) = —Vx®(x*(t1)) (22)
H(t,x*(t),p*(t),0%(t)) > H(t,x*(t),p*(t),O0(t)), VO € © and t € [ty, t]
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Theorems

Take Home Messages

Theorem (Hamilton-Jacobi-Bellman Equations)

The value function V in Eq. 12 is the unique viscosity solution of the
Hamilton-Jacobi-Bellman equation

O:V(tx) + inf {L(t,x, 0) + [V V(t,x)]" f(t,x, o)} ~0

21
V(t1,x) = d(x), (t,x) € [to, t1] x RY 21
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Remarks

Take Home Messages

Remarks on PMP

PMP establishes the necessary conditions for optimal control problem. PMP obtain
open-loop controls that are pre-computed and cannot be applied on-the-fly.

Remarks on HJB

HJB equation establishes the necessary and sufficient conditions for optimal control
problem. Provided we can solve the HJB, the optimal control solution is of feed-back
or closed-loop form, meaning that it tells how to steer the system by just observing the
state trajectory.
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