Schrödinger Bridge Problem

Bangyan Liao liaobangyan@westlake.edu.cn

Oct 2024

Background Knowledge Revisit

Schrödinger Bridge Problem

Optimality Condition of SBP

SBP with General Prior

Outline

Background Knowledge Revisit

Girsanov Theorem Path Measure Nelson's Duality SOC Perspective of OT

Schrödinger Bridge Problem

Optimality Condition of SBP

SBP with General Prior

Theorem (Girsanov Theorem)

Given two Itô processes with the same constant volatility: $d\mathbf{x}(t) = \mathbf{b}_1(t) + \sigma d\beta(t), \quad \mathbf{x} = \mathbf{x}_0 \text{ and } d\mathbf{y}(t) = \mathbf{b}_2(t) + \sigma d\beta(t), \quad \mathbf{y} = \mathbf{x}_0, \text{ the RN}$ derivative of their respective path measures \mathbb{P}, \mathbb{Q} is given by

$$rac{d\mathbb{P}}{d\mathbb{Q}}(\cdot) = \exp\left(-rac{1}{2\sigma^2}\int_0^t \|\mathbf{b}_1(s) - \mathbf{b}_2(s)\|^2\,ds + rac{1}{\sigma^2}\int_0^t (\mathbf{b}_1(s) - \mathbf{b}_2(s))^ op deta(s)
ight) \quad (1)$$

where the type signature of this RN derivative is $\frac{d\mathbb{P}}{d\mathbb{Q}}$: $C(\mathcal{T}, \mathbb{R}^d) \to \mathbb{R}$.

Definition (Path Measure)

For an Itô process of the form $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$ defined in [0, T], we call \mathbb{P} the path measure of the above process, with outcome space $\Omega = C([0, T], \mathbb{R}^d)$, if the distribution \mathbb{P} describes a weak solution to the above SDE.

Let us define a forward process X_t that solves $dX_t = \mu_+(t, X_t) dt + \sigma(t, X_t) dW_t$ and a backward process $X_{\tilde{t}}$ that solves $dX_{\tilde{t}} = \mu_-(\tilde{t}, X_{\tilde{t}}) d\tilde{t} + \sigma(\tilde{t}, X_{\tilde{t}}) dW_{\tilde{t}}$. We can also define the corresponding probability measure as $p_t(x)$ and $p_{\tilde{t}}(x)$ respectively. Then, if $p_{T-t}(x) = p_{\tilde{t}}(x)$. The Nelson's Duality tells us that

$$\mu_{+}(t, x) - \mu_{-}(\tilde{t}, x) = \sigma^{2} \nabla_{x} \log p_{t}(x)$$
$$\mu_{-}(\tilde{t}, x) - \mu_{+}(t, x) = \sigma^{2} \nabla_{x} \log p_{\tilde{t}}(x)$$

(2)

Eularian & Lagrangian Formalism SOC Perspective of OT

Theorem (Brenier-Benamou Formulation (Eularian Formalism))

$$\inf_{\substack{(\mu,\nu)\\ (\mu,\nu)}} \int_0^1 \int_{\mathbb{R}^n} \frac{1}{2} \|\nu(t,x)\|^2 \,\mathrm{d}\mu_t(x) \,\mathrm{d}t$$
s.t.
$$\frac{\partial \mu_t}{\partial t} + \nabla \cdot (\nu \mu_t) = 0,$$

$$\mu_{t=0} = \mu_0, \quad \mu_{t=1} = \mu_1,$$
(3)

Theorem (SOC Formulation (Lagrangian Formalism))

$$\inf_{\nu} \mathbb{E}\left\{\int_{0}^{1} \frac{1}{2} \|\nu(t, X_{t})\|^{2} dt\right\}$$
s.t.
$$dX_{t} = \nu(t, X_{t}) dt,$$

$$X_{0} \sim \mu_{0}, \quad X_{1} \sim \mu_{1},$$
(4)

Proof. (From OT to Brenier-Benamou Formulation).

Please refer the Sec. 3.3 in Stochastic control liaisons: Richard sinkhorn meets gaspard monge on a schrödinger bridge. $\hfill\square$

Proof. (From Brenier-Benamou to SOC Formulation). Notice that

$$\mathbb{E}_{x}\left\{\int_{0}^{1}\frac{1}{2}\|\nu(t,X_{t}(x))\|^{2}\,\mathrm{d}t\right\} = \int_{0}^{1}\int_{\mathbb{R}^{n}}\frac{1}{2}\|\nu(t,X_{t}(x))\|^{2}\,\mathrm{d}\mu_{0}(x)\,\mathrm{d}t$$
(5)

Then, by applying the definition of push-forward operator $X_{t\#}$

$$\int f(X_t(x))d\mu_0(x) = \int f(x)d\mu_t(x)$$
(6)

we can get the equivalent transformation.

Theorem (Optimality Condition for SOC-OT) Let $\mu_t^*(x)$ with $t \in [0,1]$ and $x \in \mathbb{R}^n$, satisfy

$$\frac{\partial \mu_t^*}{\partial t} + \nabla \cdot (\mu_t^* \nabla \lambda) = 0, \quad \mu_{t=0}^* = \mu_0, \tag{7}$$

where λ is a solution of the Hamilton-Jacobi equation

$$\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 = 0 \tag{8}$$

for some boundary condition $\lambda(1, x) = \lambda_1(x)$. If $\mu_{t=1}^* = \mu_1$, then the pair (μ^*, ν^*) with $\nu^*(t, x) = \nabla \lambda(t, x)$ is the solution.

Optimality Condition for SOC-OT SOC Perspective of OT

Proof. (Optimality Condition for SOC-OT).

Consider the unconstrained minimization of the Lagrangian

$$\mathcal{L}(\mu,\nu) = \int_0^1 \int_{\mathbb{R}^n} \left[\frac{1}{2} \|\nu(t,x)\|^2 \mu_t(x) + \lambda(t,x) \left(\frac{\partial \mu_t}{\partial t} + \nabla \cdot (\nu \mu_t) \right) \right] \mathrm{d}x \, \mathrm{d}t \qquad (9)$$

where μ_t satisfies the boundary condition. Then, integrating by parts, assuming that limits for $||x|| \to \infty$ are zero, we get

$$\int_{0}^{1} \int_{\mathbb{R}^{n}} \left[\frac{1}{2} \| \nu(t,x) \|^{2} + \left(-\frac{\partial \lambda}{\partial t} - \nabla \lambda \cdot \nu \right) \right] \mu_{t}(x) \mathrm{d}x \, \mathrm{d}t \\
+ \int_{\mathbb{R}^{n}} \int_{0}^{1} \frac{\partial \lambda(t,x) \mu_{t}(x)}{\partial t} \mathrm{d}t \, \mathrm{d}x + \int_{0}^{1} \int_{\mathbb{R}^{n}} \frac{\partial \lambda(t,x) \nu(t,x) \mu_{t}(x)}{\partial x} \mathrm{d}x \, \mathrm{d}t$$
(10)

Proof. (Optimality Condition for SOC-OT).

The last two integrals are constant for a fixed λ and can therefore be discarded. Then, we consider doing this in two stages, starting from minimization with respect to ν for a fixed flow of probability densities μ_t . Pointwise minimization of the integral at each time gives that

$$\nu_{\mu_t}^*(t,x) = \nabla \lambda(t,x) \tag{9}$$

Then, substituting this expression for the optimal control, we obtain

$$J(\mu) = -\int_{\mathbb{R}^n} \int_0^1 \left[\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 \right] \mu_t(x) \mathrm{d}t \,\mathrm{d}x \tag{10}$$

In view of this, if λ satisfies the Hamilton-Jacobi equation $\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 = 0$, then $J(\mu)$ is identically zero.

SOC Perspective of OT with Prior Drift SOC Perspective of OT

The generalization to non-trivial underlying dynamics of the form $\dot{x} = f(t, x) + \nu$ leads in a similar manner to

Theorem (SOC with Prior Drift (Eularian Formalism))

$$\inf_{\substack{(\mu,\nu)}} \int_0^1 \int_{\mathbb{R}^n} \frac{1}{2} \|\nu(t,x) - f(t,x)\|^2 \,\mathrm{d}\mu_t(x) \,\mathrm{d}t$$
s.t.
$$\frac{\partial \mu_t}{\partial t} + \nabla \cdot (\nu \mu_t) = 0,$$

$$\mu_{t=0} = \mu_0, \quad \mu_{t=1} = \mu_1,$$
(11)

Theorem (SOC with Prior Drift (Lagrangian Formalism))

$$\inf_{\nu} \mathbb{E}\left\{\int_{0}^{1} \frac{1}{2} \|\nu(t, X_{t})\|^{2} dt\right\}$$
s.t. $dX_{t} = (f(t, X_{t}) + \nu(t, X_{t})) dt, \qquad X_{0} \sim \mu_{0}, \quad X_{1} \sim \mu_{1},$
(12)

11/37

SOC Perspective of OT with Prior Drift SOC Perspective of OT

The generalization to non-trivial underlying dynamics of the form $\dot{x} = f(t, x) + \nu$ leads in a similar manner to

Theorem (Optimality Condition for SOC-OT with prior drift) If λ satisfies the Hamilton-Jacobi equation

$$\frac{\partial \lambda}{\partial t} + f \cdot \nabla \lambda + \frac{1}{2} \|\nabla \lambda\|^2$$
(13)

and is such that the solution μ^* to

$$\frac{\partial \mu_t^*}{\partial t} + \nabla \cdot \left[(f + \nabla \lambda) \mu_t^* \right] = 0, \quad \mu_{t=0}^* = \mu_0, \tag{14}$$

satisfies the end-point condition $\mu_{t=1}^* = \mu_1$ as well, then the pair $(\mu_t^*, \nu_t^* = f_t + \nabla \lambda)$ is the solution, provided $\lambda \mu_t^*$ vanishes as $||x|| \to \infty$ for each fixed t.

Background Knowledge Revisit

Schrödinger Bridge Problem

OT on Path Measure Dynamic Schrödinger Bridge Problem Formulation Static Schrödinger Bridge Problem Formulation Solution Structure of SBP Equivalent SBP Formulations

Optimality Condition of SBP

SBP with General Prior

OT on Path Measure

Schrödinger Bridge Problem

Dynamic Schrödinger Bridge Problem Formulation Schrödinger Bridge Problem

Definition (Dynamic Schrödinger Bridge Problem)

$$P_{\mathsf{SBP}} := \arg \min_{P \in \mathcal{D}(\rho_0, \rho_1)} \mathbb{D}(P||W^{\varepsilon}) \tag{15}$$

where W^{ε} represents the prior path measure induced by the Wiener process $\mathrm{d}X = \sqrt{\varepsilon}\mathrm{d}W$ and

$$\mathbb{D}(P||Q) = \mathbb{E}_P\left\{\log\frac{\mathrm{d}P}{\mathrm{d}Q}\right\}, \quad \text{if}P \ll Q \tag{16}$$

denotes the relative entropy (KL divergence), and

$$\mathcal{D}(\rho_0, \rho_1) = \{ P \in \mathcal{C}([0, 1], \mathbb{R}^n) | P_{t=0} = \rho_0, P_{t=1} = \rho_1 \}$$
(17)

denotes a path measure has marginal measure ρ_0 and ρ_1 at time t = 0 and t = 1, respectively.

Definition (Static Schrödinger Bridge Problem)

$$\{P_{\text{SBP}}\}_{01} := \arg\min_{P_{01} \in \Pi(\rho_0, \rho_1)} \mathbb{D}(P_{01} || W_{01}^{\varepsilon})$$
(18)

where W_{01}^{ε} represents the Wiener process induced prior path measure marginalized at time t = 0 and t = 1. Besides, the set of product measure defines as

$$\Pi(\rho_0, \rho_1) = \left\{ P_{01} : \mathbb{R}^n \times \mathbb{R}^n \to [0, 1] | \int_{y} \mathrm{d}P_{01}(x, y) = \rho_0(x), \int_{x} \mathrm{d}P_{01}(x, y) = \rho_1(y) \right\}$$
(19)

Proof. (From Dynamic SBP to Static SBP).

By applying the disintegration theorem

 \mathbb{I}

$$\mathbb{D}(P||W^{\varepsilon}) = \int \log\left(\frac{\mathrm{d}P}{\mathrm{d}W^{\varepsilon}}\right) \mathrm{d}P = \int_{01} \int_{\cdot|01} \log\left(\frac{\mathrm{d}P_{01}}{\mathrm{d}W^{\varepsilon}_{01}} \frac{\mathrm{d}P_{\cdot|01}}{\mathrm{d}W^{\varepsilon}_{\cdot|01}}\right) \mathrm{d}P_{01} \mathrm{d}P_{\cdot|01} \\
= \int_{01} \int_{\cdot|01} \log\left(\frac{\mathrm{d}P_{01}}{\mathrm{d}W^{\varepsilon}_{01}}\right) \mathrm{d}P_{\cdot|01} \mathrm{d}P_{01} + \int_{01} \int_{\cdot|01} \log\left(\frac{\mathrm{d}P_{\cdot|01}}{\mathrm{d}W^{\varepsilon}_{\cdot|01}}\right) \mathrm{d}P_{\cdot|01} \mathrm{d}P_{01} \\
= \int_{01} \log\left(\frac{\mathrm{d}P_{01}}{\mathrm{d}W^{\varepsilon}_{01}}\right) \mathrm{d}P_{01} + \int_{01} \int_{\cdot|01} \log\left(\frac{\mathrm{d}P_{\cdot|01}}{\mathrm{d}W^{\varepsilon}_{\cdot|01}}\right) \mathrm{d}P_{\cdot|01} \mathrm{d}P_{01} \\$$
(20)

Proof. (From Dynamic SBP to Static SBP).

notice that $\mathrm{d}\textit{P}_{.|01} = \mathrm{d}\textit{W}_{.|01}^{\varepsilon}$ realizes the so-called Brownian Bridge which defined as

$$dX_t = \frac{1}{1-t} (x_1 - X_t) dt + \sqrt{\varepsilon} dW, \quad X_{t=0} = x_0$$

$$P(X_t | X_0) = N((1-t)x_0 + tx_1, t(1-t))$$
(20)

After canceling out the last term in the dynamic SBP, we can complete the proof.

Solution Structure of SBP

Schrödinger Bridge Problem

Remarks.

For simplicity, we can represent the path measure P as a distribution which evolves according to the solution of an SDE of the form

$$\mathrm{d}X_t = v_t \,\mathrm{d}t + \sqrt{\varepsilon}\mathrm{d}W \tag{21}$$

• The disintegration theorem tells us that, if we have the optimal dynamic path measure P^* , then the static path measure P_{01}^* is just the start-end time marginal of the dynamic path measure. If we have the static path measure P_{01}^* , then we can always infer the dynamic path measure by applying the Brownian bridge.

Corollary (EntropicOT-SBP)

The SBP has a close connection in the optimal transport community, where the static SBP is actually equivalent to the entropic optimal transport problem as

$$\min_{\pi \in \Pi(\rho_0,\rho_1)} \int \int \frac{\|x-y\|^2}{2\varepsilon} \mathrm{d}\pi(x,y) + \int \int \log \pi(x,y) \mathrm{d}\pi(x,y)$$
(22)

Proof. (EntropicOT-SBP).

m

Let us define the W_{01}^{ε} as a decomposition $dW_{01}^{\varepsilon}(x,y) = dq_0(x)N(y|x,\varepsilon)$. Then,

$$\mathbb{D}(P_{01}||W_{01}^{\varepsilon}) = \int_{01} \log\left(\frac{\mathrm{d}P_{01}}{\mathrm{d}W_{01}^{\varepsilon}}\right) \mathrm{d}P_{01} = \int_{01} \left(\log \mathrm{d}P_{01}\right) \,\mathrm{d}P_{01} + \int_{01} \left(\log \mathrm{d}W_{01}^{\varepsilon}\right) \,\mathrm{d}P_{01} \\ = \int_{01} \left(\log \mathrm{d}P_{01}\right) \,\mathrm{d}P_{01} - \int_{01} \left(\log \mathrm{d}q_{0}(x)\right) \,\mathrm{d}P_{01} - \int_{01} -\frac{\|x-y\|^{2}}{2\varepsilon} \mathrm{d}P_{01} \\ \operatorname{in} \mathbb{D}(P_{01}||W_{01}^{\varepsilon}) = \min \int \int \left(\log \mathrm{d}P_{01}\right) \,\mathrm{d}P_{01} + \int \int \frac{\|x-y\|^{2}}{2\varepsilon} \mathrm{d}P_{01} + \operatorname{const}$$
(23)

Let the π represents the P_{01} , which completes the proof.

Corollary (SOC-SBP)

Besides the entropic OT perspective, we can also view the dynamic SBP from the stochastic optimal control perspective

$$\inf_{v} \mathbb{E} \left\{ \int_{0}^{1} \frac{1}{2\varepsilon} \|v(t, X_{t})\|^{2} dt \right\}$$
s.t. $dX_{t} = v(t, X_{t}) dt + \sqrt{\varepsilon} dW_{t}, \quad X_{0} \sim \mu_{0}, \quad X_{1} \sim \mu_{1},$
(24)

SOC Perspective Equivalent SBP Formulations

Proof. (SOC-SBP). By applying the Girsanov Theorem,

$$\frac{\mathrm{d}P}{\mathrm{d}W^{\varepsilon}}(\cdot) = \exp\left(\frac{1}{2\varepsilon}\int_{0}^{1} \|v_{t}(\cdot)\|^{2}\,\mathrm{d}t + \frac{1}{\varepsilon}\int_{0}^{1} v_{t}(\cdot)^{\top}\,\mathrm{d}W_{t}\right)$$
(25)

we have that

$$\mathbb{D}(P||W^{\varepsilon}) = \int \log\left(\frac{\mathrm{d}P}{\mathrm{d}W^{\varepsilon}}\right) \mathrm{d}P = \int \log\left(\frac{\mathrm{d}P_{0}}{\mathrm{d}W_{0}^{\varepsilon}}\frac{\mathrm{d}P_{\cdot|0}}{\mathrm{d}W_{\cdot|0}^{\varepsilon}}\right) \mathrm{d}P$$
$$= \int \log\left(\frac{\mathrm{d}P_{0}}{\mathrm{d}W_{0}^{\varepsilon}}\right) \mathrm{d}P_{0} + \int \frac{1}{2\varepsilon} \int_{0}^{1} \|v_{t}(\cdot)\|^{2} \,\mathrm{d}t + \frac{1}{\varepsilon} \int_{0}^{1} v_{t}(\cdot)^{\top} \,\mathrm{d}W_{t} \mathrm{d}P \quad (26)$$
$$= \mathbb{D}(P_{0}||W_{0}^{\varepsilon}) + \int \frac{1}{2\varepsilon} \int_{0}^{1} \|v_{t}(\cdot)\|^{2} \,\mathrm{d}t + \frac{1}{\varepsilon} \int_{0}^{1} v_{t}(\cdot)^{\top} \,\mathrm{d}W_{t} \mathrm{d}P$$

Proof. (SOC-SBP).

Since

$$\mathbb{E}\left[\int_0^1 v_t(\cdot)^\top \,\mathrm{d}W_t\right] = 0, \tag{25}$$

then

$$\arg\min \mathbb{D}(P_{01}||W_{01}^{\varepsilon}) = \arg\min \mathbb{E}\left[\frac{1}{2\varepsilon}\int_{0}^{1}\|v_{t}(\cdot)\|^{2} dt\right]$$
(26)

which completes the proof.

Corollary (FD-SBP)

The stochastic optimal control perspective of SBP leads an equivalent fluid dynamic perspective.

$$\min_{(\mu_t,\nu)} \int_0^1 \int_{\mathbb{R}^n} \frac{1}{2\varepsilon} \|\nu(t,x)\|^2 \,\mathrm{d}\mu_t(x) \,\mathrm{d}t,$$

$$s.t. \frac{\partial\mu_t}{\partial t} + \nabla \cdot (\nu\mu_t) - \frac{\varepsilon}{2} \Delta\mu_t = 0, \quad \mu_{t=0} = \mu_0, \ \mu_{t=1} = \mu_1,$$
(27)

Corollary (DynamicEOT-SBP)

We can also present a dynamic version for entropic optimal transport SBP as

$$\inf_{\substack{(\mu_t, \mathbf{v})}} \int_0^1 \int_{\mathbb{R}^n} \left[\frac{1}{2\varepsilon} \| \mathbf{v}(t, \mathbf{x}) \|^2 + \frac{\varepsilon}{8} \| \nabla \log \mu_t \|^2 \right] d\mu_t(\mathbf{x}) dt,$$

$$s.t. \frac{\partial \mu_t}{\partial t} + \nabla \cdot (\mathbf{v}\mu_t) = 0, \quad \mu_{t=0} = \mu_0, \ \mu_{t=1} = \mu_1,$$
(28)

Background Knowledge Revisit

Schrödinger Bridge Problem

Optimality Condition of SBP

Optimality Condition (SOC) Optimality Condition (Lagrange Function) Schrödinger System

SBP with General Prior

Theorem (Optimality Condition of SBP (SOC))

In the following, we give the optimality condition for SBP.

$$\frac{\partial V_t}{\partial t} - \frac{\varepsilon}{2} \|\nabla V_t\|^2 + \frac{\varepsilon}{2} \Delta V_t = 0$$

$$\frac{\partial \mu_t}{\partial t} + \nabla \cdot (v_t \mu_t) - \frac{\varepsilon}{2} \Delta \mu_t = 0$$
(29)

where the optimal policy (control)

$$v_t^* = -\sqrt{\varepsilon} \,\nabla V_t(X_t) \tag{30}$$

Recall the Itô Lemma for SDE $dX_t = u(X_t, t) dt + \sqrt{\varepsilon} dW_t$:

$$dV(X_t, t) = \frac{\partial V(X_t, t)}{\partial t} dt + \frac{\partial V(X_t, t)}{\partial x} dX_t + \frac{1}{2} \frac{\partial^2 V(X_t, t)}{\partial x^2} (dX_t)^2$$

= $\frac{\partial V_t}{\partial t} dt + \mathcal{L}V(x, t) dt + \nabla V_t(x) \cdot \sqrt{\varepsilon} dW_t$ (31)

where the $\mathcal{L}V(x,t)$ is the generator which defines as

$$\mathcal{L}V(x,t) = \nabla V_t(x) \cdot u(X_t,t) + \frac{\varepsilon}{2} \operatorname{Trace}\left[\nabla^2 V_t(x)\right]$$
(32)

Recall the proof of HJB equation in the optimal control section. The key step is

$$V(s, \mathbf{z}) = \inf_{\theta} \left\{ \int_{s}^{s+\Delta s} L(t, \mathbf{x}(t), \theta(t)) dt + V(s + \Delta s, \mathbf{x}(s + \Delta s)) \right\}$$

$$\approx \inf_{\theta} \left\{ L(s, \mathbf{z}, \theta(s)) \Delta s + V(s + \Delta s, \mathbf{x}(s + \Delta s)) \right\}$$

$$\approx \inf_{\theta} \left\{ L(s, \mathbf{z}, \theta(s)) \Delta s + V(s, \mathbf{x}(s)) + \partial_{s} V(s, \mathbf{z}) \Delta s + [\nabla_{\mathbf{z}} V(s, \mathbf{z})]^{\top} f(s, \mathbf{z}, \theta(s)) \Delta s \right\}$$

$$\dot{\mathbf{x}}(t) = f(t, \mathbf{x}(t), \theta(t)), \quad t \in [s, \tau], \quad \mathbf{x}(s) = \mathbf{z}$$
(31)

Similarly, we can derive the HJB equation for SOC as:

$$V(X_{s}, s) = \inf_{u} \mathbb{E} \left\{ \int_{s}^{s+\Delta s} w(X_{t}, u, t) dt + V(X_{s+\Delta s}, s+\Delta s) \right\}$$

$$\approx \inf_{u} \mathbb{E} \left\{ w(X_{s}, u, s) \Delta s + V(X_{s+\Delta s}, s+\Delta s) \right\}$$

$$\approx \inf_{u} \mathbb{E} \left\{ w(X_{t}, u, t) \Delta s + V(X_{s}, s) + \partial_{s} V(\mathbf{z}, s) \Delta s + \mathcal{L} V(\mathbf{z}, s) \Delta s + \nabla V_{s}(\mathbf{z}) \cdot \sqrt{\varepsilon} \Delta dW_{s} \right\}$$

$$dX_{t} = u(X_{t}, t) dt + \sqrt{\varepsilon} dW_{t}, \quad t \in [s, \tau], \quad X_{s} = \mathbf{z}$$
(31)

Then, the HJB equation for this problem is

$$\frac{\partial V(x,t)}{\partial t} + \min_{u \in \mathcal{U}} \left\{ \mathcal{L} V(x,t) + \frac{\|u(x,t)\|^2}{2\varepsilon} \right\} = 0, V(x,T) = 0.$$
(31)

Then, the optimal $u_t = -\varepsilon V_t$, substitute this optimal control, we can complete the proof.

Theorem (Optimality Condition of SBP (Lagrange Function)) In the following, we give the optimality condition for SBP.

$$\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 + \frac{\varepsilon}{2} \Delta \lambda = 0$$

$$\frac{\partial \mu_t}{\partial t} + \nabla \cdot (v_t \mu_t) - \frac{\varepsilon}{2} \Delta \mu_t = 0$$
(32)

where the optimal policy (control)

$$v_t^* = \nabla \lambda(X_t) \tag{33}$$

We can also prove the same results from the Lagrange function. Consider the unconstrained minimization of the Lagrangian

$$\mathcal{L}(\mu, \mathbf{v}) = \int_0^1 \int_{\mathbb{R}^n} \left[\frac{1}{2} \| \mathbf{v}(t, \mathbf{x}) \|^2 \mu_t(\mathbf{x}) + \lambda(t, \mathbf{x}) \left(\frac{\partial \mu_t}{\partial t} + \nabla \cdot (\mathbf{v}\mu_t) - \frac{\varepsilon}{2} \Delta \mu_t \right) \right] d\mathbf{x} dt$$
(34)
here μ_t satisfies the boundary condition. Then, integrating by parts, assuming that

where μ_t satisfies the boundary condition. Then, integrating by parts, assuming that limits for $||x|| \to \infty$ are zero, we get

where μ_t satisfies the boundary condition. Then, integrating by parts, assuming that limits for $||x|| \to \infty$ are zero, we get

$$\int_{0}^{1} \int_{\mathbb{R}^{n}} \left[\frac{1}{2} \| v(t,x) \|^{2} - \left(\frac{\partial \lambda}{\partial t} + \nabla \lambda \cdot \nu + \frac{\varepsilon}{2} \Delta \lambda \right) \right] \mu_{t}(x) dx dt + \int_{0}^{1} \int_{\mathbb{R}^{n}} \frac{\partial [\lambda(t,x)\mu_{t}(x)]}{\partial t} dx dt + \int_{0}^{1} \int_{\mathbb{R}^{n}} \frac{\partial [\lambda(t,x)\nu(t,x)\mu_{t}(x)]}{\partial x} dx dt \quad (34) - \frac{\varepsilon}{2} \int_{0}^{1} \int_{\mathbb{R}^{n}} \frac{\partial [\lambda(t,x)\partial \mu_{t}(x)]}{\partial x} dx dt + \frac{\varepsilon}{2} \int_{0}^{1} \int_{\mathbb{R}^{n}} \frac{\partial [\lambda(t,x)\mu_{t}(x)]}{\partial x} dx dt$$

The last four integrals are constant for a fixed λ and can therefore be discarded. Then, we consider doing this in two stages, starting from minimization with respect to ν for a fixed flow of probability densities μ_t . Pointwise minimization of the integral at each time gives that

$$\nu_{\mu_t}^*(t,x) = \nabla \lambda(t,x) \tag{34}$$

Then, substituting this expression for the optimal control, we obtain

$$J(\mu) = -\int_{\mathbb{R}^n} \int_0^1 \left[\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 + \frac{\varepsilon}{2} \Delta \lambda \right] \mu_t(x) \mathrm{d}t \,\mathrm{d}x \tag{35}$$

In view of this, if λ satisfies the Hamilton-Jacobi equation $\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 + \frac{\varepsilon}{2} \Delta \lambda = 0$, then $J(\mu)$ is identically zero.

Theorem (Schrödinger System)

$$\begin{cases} \frac{\partial \Phi}{\partial t} = -\frac{\varepsilon}{2} \Delta \Phi \\ \frac{\partial \hat{\Phi}}{\partial t} = \frac{\varepsilon}{2} \Delta \hat{\Phi} \end{cases} \quad s.t. \quad \Phi(0,\cdot) \hat{\Phi}(0,\cdot) = \mu_0, \quad \Phi(1,\cdot) \hat{\Phi}(1,\cdot) = \mu_1. \end{cases}$$
(36)

Proof.

By applying the Hopf-Cole transform $(\lambda, \mu_t)
ightarrow (\Phi, \hat{\phi})$,

$$\Phi = \exp\left(\frac{\lambda}{\varepsilon}\right) \quad \text{and} \quad \hat{\Phi} = \mu_t \exp\left(\frac{-\lambda}{\varepsilon}\right), \tag{37}$$

1) For the first equation,

$$\frac{1}{\varepsilon} \exp\left(\frac{\lambda}{\varepsilon}\right) \frac{\partial \lambda}{\partial t} = -\frac{1}{2\varepsilon} \exp\left(\frac{\lambda}{\varepsilon}\right) \|\nabla \lambda\|^2 - \frac{1}{2} \exp\left(\frac{\lambda}{\varepsilon}\right) \Delta \lambda$$
$$\frac{\partial \lambda}{\partial t} = -\frac{1}{2} \|\nabla \lambda\|^2 - \frac{\varepsilon}{2} \Delta \lambda$$
(38)

Proof.

2) For the second equation,

$$\begin{split} \frac{\partial \mu_t}{\partial t} &\exp\left(-\frac{\lambda}{\varepsilon}\right) + \mu_t \exp\left(-\frac{\lambda}{\varepsilon}\right) \left(-\frac{1}{\varepsilon}\right) \frac{\partial \lambda}{\partial t} \\ &= \frac{\varepsilon}{2} \frac{\partial}{\partial t} \left[\nabla \mu_t \exp\left(-\frac{\lambda}{\varepsilon}\right) + \mu_t \exp\left(-\frac{\lambda}{\varepsilon}\right) \left(-\frac{1}{\varepsilon}\right) \nabla \lambda \right] \\ &= \frac{\varepsilon}{2} \Delta \mu_t \exp\left(-\frac{\lambda}{\varepsilon}\right) + \frac{\varepsilon}{2} \nabla \mu_t \exp\left(-\frac{\lambda}{\varepsilon}\right) \left(-\frac{1}{\varepsilon}\right) \nabla \lambda \\ &+ \frac{\varepsilon}{2} \nabla \mu_t \exp\left(-\frac{\lambda}{\varepsilon}\right) \left(-\frac{1}{\varepsilon}\right) \nabla \lambda + \frac{\varepsilon}{2} \mu_t \exp\left(-\frac{\lambda}{\varepsilon}\right) \left(\frac{1}{\varepsilon^2}\right) \|\nabla \lambda\|^2 \\ &+ \frac{\varepsilon}{2} \mu_t \exp\left(-\frac{\lambda}{\varepsilon}\right) \left(-\frac{1}{\varepsilon}\right) \Delta \lambda \end{split}$$

(37) _{31/37}

Proof.

$$\frac{\partial \mu_{t}}{\partial t} + \mu_{t} \left(-\frac{1}{\varepsilon}\right) \frac{\partial \lambda}{\partial t} = \frac{\varepsilon}{2} \Delta \mu_{t} + \frac{\varepsilon}{2} \nabla \mu_{t} \left(-\frac{1}{\varepsilon}\right) \nabla \lambda + \frac{\varepsilon}{2} \nabla \mu_{t} \left(-\frac{1}{\varepsilon}\right) \nabla \lambda + \frac{\varepsilon}{2} \mu_{t} \left(-\frac{1}{\varepsilon}\right) \nabla \lambda + \frac{\varepsilon}{2} \mu_{t} \left(-\frac{1}{\varepsilon}\right) \Delta \lambda$$
(37)

substitute the equation $\frac{\partial \lambda}{\partial t} + \frac{1}{2} \|\nabla \lambda\|^2 + \frac{\varepsilon}{2} \Delta \lambda = 0$ into the above equation

Proof.

$$\frac{\partial \mu_{t}}{\partial t} + \mu_{t} \left(-\frac{1}{\varepsilon}\right) \frac{\partial \lambda}{\partial t} =
\frac{\partial \mu_{t}}{\partial t} + \frac{\mu_{t}}{\varepsilon} \left(\frac{1}{2} \|\nabla\lambda\|^{2} + \frac{\varepsilon}{2} \Delta\lambda\right) = \frac{\varepsilon}{2} \Delta\mu_{t} + \frac{\varepsilon}{2} \nabla\mu_{t} \left(-\frac{1}{\varepsilon}\right) \nabla\lambda + \frac{\varepsilon}{2} \nabla\mu_{t} \left(-\frac{1}{\varepsilon}\right) \nabla\lambda
+ \frac{\varepsilon}{2} \mu_{t} \left(\frac{1}{\varepsilon^{2}}\right) \|\nabla\lambda\|^{2} + \frac{\varepsilon}{2} \mu_{t} \left(-\frac{1}{\varepsilon}\right) \Delta\lambda
\frac{\partial \mu_{t}}{\partial t} = \frac{\varepsilon}{2} \Delta\mu_{t} - \nabla\mu_{t} \nabla\lambda - \mu_{t} \Delta\lambda$$
(37)

which completes the proof.

3) The Lagrangian function of static SBP has the form

$$\mathcal{L}(P_{01},\lambda,\mu) = \int \int \log\left(\frac{P_{01}(x,y)}{W_{01}^{\varepsilon}(x,y)}\right) P_{01}(x,y) \,\mathrm{d}x \,\mathrm{d}y + \int \lambda(x) \left[\int P_{01}(x,y) \,\mathrm{d}y - \rho_0(x)\right] \,\mathrm{d}x + \int \mu(y) \left[\int P_{01}(x,y) \,\mathrm{d}x - \rho_1(y)\right] \,\mathrm{d}y$$
(37)

Setting the first variation equal to zero, we get the sufficient optimality condition

$$1 + \log P_{01}^*(x, y) - \log q_0(x) - \log p(0, x, 1, y) + \lambda(x) + \mu(y) = 0$$
(38)

where we have used the expression $W_{01}^{\varepsilon}(x, y) = q_0(x) p(0, x, 1, y)$.

Proof.

Then, we get

$$\frac{P_{01}^*(x,y)}{\rho(0,x,1,y)} = \exp\left[\log \rho_0^W(x) - 1 - \lambda(x) - \mu(y)\right]$$
$$= \exp\left[\log \rho_0^W(x) - 1 - \lambda(x)\right] \exp\left[-\mu(y)\right]$$
$$= \hat{\Phi}(x) + \Phi(y)$$
(37)

Then, the optimal $P_{01}^*(x, y)$ has then the form

$$P_{01}^{*}(x,y) = \hat{\Phi}(x) \, p(0,x,1,y) \, \Phi(y) \tag{38}$$

Proof.

with Φ and $\hat{\Phi}$ satisfying

$$\hat{\Phi}(x) \int \rho(0, x, 1, y) \,\Phi(y) \,\mathrm{d}y = \rho_0(x), \quad \Phi(y) \int \rho(0, x, 1, y) \,\hat{\Phi}(x) \,\mathrm{d}x = \rho_1(y) \quad (37)$$

Let
$$\hat{\Phi}(0, x) = \hat{\Phi}(x), \Phi(1, y) = \Phi(y)$$
 and
 $\hat{\Phi}(1, y) = \int p(0, x, 1, y) \hat{\Phi}(0, x) dx, \quad \Phi(0, x) = \int p(0, x, 1, y) \Phi(1, y) dy$ (38)

with the boundary conditions

$$\Phi(0,x) \cdot \hat{\Phi}(0,x) = \rho_0(x), \quad \Phi(1,y) \cdot \hat{\Phi}(1,y) = \rho_1(y).$$
(39)

Background Knowledge Revisit

Schrödinger Bridge Problem

Optimality Condition of SBP

SBP with General Prior SBP with General Prior Optimality Criteria

SBP with General Prior

Definition (Dynamic SBP)

$$P_{\mathsf{SBP}} := \arg \min_{P \in \mathcal{D}(\rho_0, \rho_1)} \mathbb{D}(P || \tilde{P}) \tag{40}$$

where \hat{P} represents the prior path measure induced by the stochastic differential equation $dX_t = f(t, X_t) dt + \sqrt{\varepsilon} dW_t$ and

$$\mathbb{D}(P||\tilde{P}) = \mathbb{E}_{P}\left\{\log\frac{\mathrm{d}P}{\mathrm{d}\tilde{P}}\right\}, \quad \text{if}P \ll \tilde{P}$$
(41)

denotes the relative entropy (KL divergence), and

$$\mathcal{D}(\rho_0, \rho_1) = \{ P \in \mathcal{C}([0, 1], \mathbb{R}^n) | P_{t=0} = \rho_0, P_{t=1} = \rho_1 \}$$
(42)

denotes a path measure has marginal measure ρ_0 and ρ_1 at time t = 0 and t = 1, respectively.

Corollary (SOC-SBP)

$$\inf_{v} \mathbb{E} \left\{ \int_{0}^{1} \frac{1}{2\varepsilon} \|v(t, X_{t})\|^{2} dt \right\}$$

$$s.t. \quad dX_{t} = [f(t, X_{t}) + v(t, X_{t})] dt + \sqrt{\varepsilon} dW_{t}, \quad X_{0} \sim \mu_{0}, \quad X_{1} \sim \mu_{1},$$

$$(43)$$

Corollary (DynamicEOT-SBP)

Let

$$\tilde{v}(t,x) = f(t,x) - \frac{\varepsilon}{2} \nabla \log \tilde{\mu}_t(t,x)$$
(44)

be the velocity of the prior process. We can also present a dynamic version for entropic optimal transport SBP as

$$\inf_{(\mu_t, \mathbf{v})} \int_0^1 \int_{\mathbb{R}^n} \left[\frac{1}{2\varepsilon} \| \mathbf{v}(t, \mathbf{x}) - \tilde{\mathbf{v}}(t, \mathbf{x}) \|^2 + \frac{\varepsilon}{8} \| \nabla \log \frac{\mu(t, \mathbf{x})}{\tilde{\mu}(t, \mathbf{x})} \|^2 \right] d\mu_t(\mathbf{x}) dt,$$

s.t. $\frac{\partial \mu_t}{\partial t} + \nabla \cdot (\mathbf{v}\mu_t) = 0, \quad \mu_{t=0} = \mu_0, \ \mu_{t=1} = \mu_1,$
(45)

Theorem (Optimality Criteria)

let us consider a general Markovian prior measure \tilde{P} which induced by a forward SDE $dX_t = f(t, X_t) dt + \sqrt{\varepsilon} dW_t$. Then the corresponding optimality criteria defines as

$$\begin{cases} \frac{\partial \Phi}{\partial t} = -\frac{\varepsilon}{2}\Delta\Phi - f \cdot \nabla\Phi\\ \frac{\partial \Phi}{\partial t} = \frac{\varepsilon}{2}\Delta\hat{\Phi} - \nabla \cdot (f\hat{\Phi}) \end{cases} \quad s.t. \quad \Phi(0,\cdot)\hat{\Phi}(0,\cdot) = \mu_0, \quad \Phi(1,\cdot)\hat{\Phi}(1,\cdot) = \mu_1. \tag{46}$$

- Machine-learning approaches for the empirical Schrodinger bridge problem
- Stochastic control liaisons: Richard Sinkhorn meets Gaspard Monge on a Schroedinger bridge
- Optimal Transport in Systems and Control
- On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint