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Girsanov Theorem
Background Knowledge Recall

Theorem (Girsanov Theorem)

Given two Itô processes with the same constant volatility:
dx(t) = b1(t) + σ dβ(t), x = x0 and dy(t) = b2(t) + σ dβ(t), y = x0, the RN
derivative of their respective path measures P,Q is given by

dP
dQ

(·) = exp

(
− 1

2σ2

∫ t

0
∥b1(s)− b2(s)∥2 ds +

1

σ2

∫ t

0
(b1(s)− b2(s))

⊤ dβ(s)

)
(1)

where the type signature of this RN derivative is dP
dQ : C (T ,Rd) → R.
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Path Measure
Background Knowledge Recall

Definition (Path Measure)

For an Itô process of the form dXt = µ(t,Xt) dt + σ(t,Xt) dWt defined in [0,T ], we
call P the path measure of the above process, with outcome space Ω = C ([0,T ],Rd),
if the distribution P describes a weak solution to the above SDE.
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Nelson’s Duality
Background Knowledge Recall

Let us define a forward process Xt that solves dXt = µ+(t,Xt) dt + σ(t,Xt) dWt and a
backward process Xt̃ that solves dXt̃ = µ−(t̃,Xt̃) dt̃ + σ(t̃,Xt̃) dWt̃ . We can also
define the corresponding probability measure as pt(x) and pt̃(x) respectively. Then, if
pT−t(x) = pt̃(x). The Nelson’s Duality tells us that

µ+(t, x)− µ−(t̃, x) = σ2∇x log pt(x)

µ−(t̃, x)− µ+(t, x) = σ2∇x log pt̃(x)

(2)
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Eularian & Lagrangian Formalism
SOC Perspective of OT

Theorem (Brenier-Benamou Formulation (Eularian Formalism))

inf
(µ,ν)

∫ 1

0

∫
Rn

1

2
∥ν(t, x)∥2 dµt(x) dt

s.t.
∂µt

∂t
+∇ · (νµt) = 0,

µt=0 = µ0, µt=1 = µ1,

(3)

Theorem (SOC Formulation (Lagrangian Formalism))

inf
ν

E
{∫ 1

0

1

2
∥ν(t,Xt)∥2 dt

}
s.t. dXt = ν(t,Xt) dt,

X0 ∼ µ0, X1 ∼ µ1,

(4)
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Eularian & Lagrangian Formalism
SOC Perspective of OT

Proof. (From OT to Brenier-Benamou Formulation).

Please refer the Sec. 3.3 in Stochastic control liaisons: Richard sinkhorn meets gaspard
monge on a schrödinger bridge.

Proof. (From Brenier-Benamou to SOC Formulation).

Notice that

Ex

{∫ 1

0

1

2
∥ν(t,Xt(x))∥2 dt

}
=

∫ 1

0

∫
Rn

1

2
∥ν(t,Xt(x))∥2 dµ0(x)dt (5)

Then, by applying the definition of push-forward operator Xt#∫
f (Xt(x))dµ0(x) =

∫
f (x)dµt(x) (6)

we can get the equivalent transformation. 8 / 37



Optimality Condition for SOC-OT
SOC Perspective of OT

Theorem (Optimality Condition for SOC-OT)

Let µ∗
t (x) with t ∈ [0, 1] and x ∈ Rn, satisfy

∂µ∗
t

∂t
+∇ · (µ∗

t∇λ) = 0, µ∗
t=0 = µ0, (7)

where λ is a solution of the Hamilton-Jacobi equation

∂λ

∂t
+

1

2
∥∇λ∥2 = 0 (8)

for some boundary condition λ(1, x) = λ1(x). If µ
∗
t=1 = µ1, then the pair (µ∗, ν∗) with

ν∗(t, x) = ∇λ(t, x) is the solution.
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Optimality Condition for SOC-OT
SOC Perspective of OT

Proof. (Optimality Condition for SOC-OT).

Consider the unconstrained minimization of the Lagrangian

L(µ, ν) =

∫ 1

0

∫
Rn

[
1

2
∥ν(t, x)∥2µt(x) + λ(t, x)

(
∂µt

∂t
+∇ · (νµt)

)]
dx dt (9)

where µt satisfies the boundary condition. Then, integrating by parts, assuming that
limits for ∥x∥ → ∞ are zero, we get∫ 1

0

∫
Rn

[
1

2
∥ν(t, x)∥2 +

(
−∂λ

∂t
−∇λ · ν

)]
µt(x)dx dt

+

∫
Rn

∫ 1

0

∂λ(t, x)µt(x)

∂t
dt dx +

∫ 1

0

∫
Rn

∂λ(t, x)ν(t, x)µt(x)

∂x
dx dt

(10)
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Optimality Condition for SOC-OT
SOC Perspective of OT

Proof. (Optimality Condition for SOC-OT).

The last two integrals are constant for a fixed λ and can therefore be discarded. Then,
we consider doing this in two stages, starting from minimization with respect to ν for a
fixed flow of probability densities µt . Pointwise minimization of the integral at each
time gives that

ν∗µt
(t, x) = ∇λ(t, x) (9)

Then, substituting this expression for the optimal control, we obtain

J(µ) = −
∫
Rn

∫ 1

0

[
∂λ

∂t
+

1

2
∥∇λ∥2

]
µt(x)dt dx (10)

In view of this, if λ satisfies the Hamilton-Jacobi equation ∂λ
∂t + 1

2∥∇λ∥2 = 0, then
J(µ) is identically zero.
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SOC Perspective of OT with Prior Drift
SOC Perspective of OT

The generalization to non-trivial underlying dynamics of the form ẋ = f (t, x) + ν leads
in a similar manner to

Theorem (SOC with Prior Drift (Eularian Formalism))

inf
(µ,ν)

∫ 1

0

∫
Rn

1

2
∥ν(t, x)− f (t, x)∥2 dµt(x) dt

s.t.
∂µt

∂t
+∇ · (νµt) = 0,

µt=0 = µ0, µt=1 = µ1,

(11)

Theorem (SOC with Prior Drift (Lagrangian Formalism))

inf
ν

E
{∫ 1

0

1

2
∥ν(t,Xt)∥2 dt

}
s.t. dXt = (f (t,Xt) + ν(t,Xt))dt, X0 ∼ µ0, X1 ∼ µ1,

(12)

11 / 37



SOC Perspective of OT with Prior Drift
SOC Perspective of OT

The generalization to non-trivial underlying dynamics of the form ẋ = f (t, x) + ν leads
in a similar manner to

Theorem (Optimality Condition for SOC-OT with prior drift)

If λ satisfies the Hamilton-Jacobi equation

∂λ

∂t
+ f · ∇λ+

1

2
∥∇λ∥2 (13)

and is such that the solution µ∗ to

∂µ∗
t

∂t
+∇ · [(f +∇λ)µ∗

t ] = 0, µ∗
t=0 = µ0, (14)

satisfies the end-point condition µ∗
t=1 = µ1 as well, then the pair (µ∗

t , ν
∗
t = ft +∇λ) is

the solution, provided λµ∗
t vanishes as ∥x∥ → ∞ for each fixed t.
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OT on Path Measure
Schrödinger Bridge Problem
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Dynamic Schrödinger Bridge Problem Formulation
Schrödinger Bridge Problem

Definition (Dynamic Schrödinger Bridge Problem)

PSBP := arg min
P∈D(ρ0,ρ1)

D(P||W ε) (15)

where W ε represents the prior path measure induced by the Wiener process
dX =

√
εdW and

D(P||Q) = EP

{
log

dP

dQ

}
, ifP ≪ Q (16)

denotes the relative entropy (KL divergence), and

D(ρ0, ρ1) = {P ∈ C([0, 1],Rn)|Pt=0 = ρ0,Pt=1 = ρ1} (17)

denotes a path measure has marginal measure ρ0 and ρ1 at time t = 0 and t = 1,
respectively.
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Static Schrödinger Bridge Problem Formulation
Schrödinger Bridge Problem

Definition (Static Schrödinger Bridge Problem)

{PSBP}01 := arg min
P01∈Π(ρ0,ρ1)

D(P01||W ε
01) (18)

where W ε
01 represents the Wiener process induced prior path measure marginalized at

time t = 0 and t = 1. Besides, the set of product measure defines as

Π(ρ0, ρ1) =

{
P01 : Rn × Rn → [0, 1]|

∫
y
dP01(x , y) = ρ0(x),

∫
x
dP01(x , y) = ρ1(y)

}
(19)
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Proof from Dynamic SBP to Static SBP
Schrödinger Bridge Problem

Proof. (From Dynamic SBP to Static SBP).

By applying the disintegration theorem

D(P||W ε) =

∫
log

(
dP

dW ε

)
dP =

∫
01

∫
·|01

log

(
dP01

dW ε
01

dP·|01

dW ε
·|01

)
dP01dP·|01

=

∫
01

∫
·|01

log

(
dP01

dW ε
01

)
dP·|01dP01 +

∫
01

∫
·|01

log

(
dP·|01

dW ε
·|01

)
dP·|01dP01

=

∫
01
log

(
dP01

dW ε
01

)
dP01 +

∫
01

∫
·|01

log

(
dP·|01

dW ε
·|01

)
dP·|01dP01

(20)
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Proof from Dynamic SBP to Static SBP
Schrödinger Bridge Problem

Proof. (From Dynamic SBP to Static SBP).

notice that dP·|01 = dW ε
·|01 realizes the so-called Brownian Bridge which defined as

dXt =
1

1− t
(x1 − Xt)dt +

√
εdW , Xt=0 = x0

P(Xt |X0) = N((1− t)x0 + tx1, t(1− t))
(20)

After canceling out the last term in the dynamic SBP, we can complete the proof.
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Solution Structure of SBP
Schrödinger Bridge Problem

Remarks.
▶ For simplicity, we can represent the path measure P as a distribution which

evolves according to the solution of an SDE of the form

dXt = vt dt +
√
εdW (21)

▶ The disintegration theorem tells us that, if we have the optimal dynamic path
measure P∗, then the static path measure P∗

01 is just the start-end time marginal
of the dynamic path measure. If we have the static path measure P∗

01, then we
can always infer the dynamic path measure by applying the Brownian bridge.
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Entropic OT Perspective
Equivalent SBP Formulations

Corollary (EntropicOT-SBP)

The SBP has a close connection in the optimal transport community, where the static
SBP is actually equivalent to the entropic optimal transport problem as

min
π∈Π(ρ0,ρ1)

∫ ∫
∥x − y∥2

2ε
dπ(x , y) +

∫ ∫
logπ(x , y)dπ(x , y) (22)
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Entropic OT Perspective
Equivalent SBP Formulations

Proof. (EntropicOT-SBP).

Let us define the W ε
01 as a decomposition dW ε

01(x , y) = dq0(x)N(y |x , ε). Then,

D(P01||W ε
01) =

∫
01
log

(
dP01

dW ε
01

)
dP01 =

∫
01
(logdP01) dP01 +

∫
01
(logdW ε

01) dP01

=

∫
01
(logdP01) dP01 −

∫
01
(logdq0(x)) dP01 −

∫
01
−∥x − y∥2

2ε
dP01

minD(P01||W ε
01) = min

∫ ∫
(logdP01) dP01 +

∫ ∫
∥x − y∥2

2ε
dP01 + const

(23)
Let the π represents the P01, which completes the proof.
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SOC Perspective
Equivalent SBP Formulations

Corollary (SOC-SBP)

Besides the entropic OT perspective, we can also view the dynamic SBP from the
stochastic optimal control perspective

inf
v
E
{∫ 1

0

1

2ε
∥v(t,Xt)∥2 dt

}
s.t. dXt = v(t,Xt) dt +

√
εdWt , X0 ∼ µ0, X1 ∼ µ1,

(24)
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SOC Perspective
Equivalent SBP Formulations

Proof. (SOC-SBP).

By applying the Girsanov Theorem,

dP

dW ε
(·) = exp

(
1

2ε

∫ 1

0
∥vt(·)∥2 dt +

1

ε

∫ 1

0
vt(·)⊤ dWt

)
(25)

we have that

D(P||W ε) =

∫
log

(
dP

dW ε

)
dP =

∫
log

(
dP0

dW ε
0

dP·|0

dW ε
·|0

)
dP

=

∫
log

(
dP0

dW ε
0

)
dP0 +

∫
1

2ε

∫ 1

0
∥vt(·)∥2 dt +

1

ε

∫ 1

0
vt(·)⊤ dWtdP

= D(P0||W ε
0 ) +

∫
1

2ε

∫ 1

0
∥vt(·)∥2 dt +

1

ε

∫ 1

0
vt(·)⊤ dWtdP

(26)
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SOC Perspective
Equivalent SBP Formulations

Proof. (SOC-SBP).

Since

E
[∫ 1

0
vt(·)⊤ dWt

]
= 0, (25)

then

arg minD(P01||W ε
01) = arg minE

[
1

2ε

∫ 1

0
∥vt(·)∥2 dt

]
(26)

which completes the proof.
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Fluid Dynamic Perspective
Equivalent SBP Formulations

Corollary (FD-SBP)

The stochastic optimal control perspective of SBP leads an equivalent fluid dynamic
perspective.

min
(µt ,v)

∫ 1

0

∫
Rn

1

2ε
∥v(t, x)∥2 dµt(x) dt,

s.t.
∂µt

∂t
+∇ · (vµt)−

ε

2
∆µt = 0, µt=0 = µ0, µt=1 = µ1,

(27)
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Dynamic Entropic OT Perspective
Equivalent SBP Formulations

Corollary (DynamicEOT-SBP)

We can also present a dynamic version for entropic optimal transport SBP as

inf
(µt ,v)

∫ 1

0

∫
Rn

[
1

2ε
∥v(t, x)∥2 + ε

8
∥∇logµt∥2

]
dµt(x)dt,

s.t.
∂µt

∂t
+∇ · (vµt) = 0, µt=0 = µ0, µt=1 = µ1,

(28)

24 / 37



Outline

Background Knowledge Revisit

Schrödinger Bridge Problem

Optimality Condition of SBP
Optimality Condition (SOC)
Optimality Condition (Lagrange Function)
Schrödinger System

SBP with General Prior

25 / 37



Optimality Condition (SOC)
Optimality Condition of SBP

Theorem (Optimality Condition of SBP (SOC))

In the following, we give the optimality condition for SBP.

∂Vt

∂t
− ε

2
∥∇Vt∥2 +

ε

2
∆Vt = 0

∂µt

∂t
+∇ · (vtµt)−

ε

2
∆µt = 0

(29)

where the optimal policy (control)

v∗t = −
√
ε∇Vt(Xt) (30)
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Proof from SOC
Optimality Condition of SBP

Proof.

Recall the Itô Lemma for SDE dXt = u(Xt , t) dt +
√
εdWt :

dV (Xt , t) =
∂V (Xt , t)

∂t
dt +

∂V (Xt , t)

∂x
dXt +

1

2

∂2V (Xt , t)

∂x2
(dXt)

2

=
∂Vt

∂t
dt +LV (x , t)dt +∇Vt(x) ·

√
εdWt

(31)

where the LV (x , t) is the generator which defines as

LV (x , t) = ∇Vt(x) · u(Xt , t) +
ε

2
Trace

[
∇2Vt(x)

]
(32)
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Proof from SOC
Optimality Condition of SBP

Proof.

Recall the proof of HJB equation in the optimal control section. The key step is

V (s, z) = inf
θ

{∫ s+∆s

s
L(t, x(t),θ(t))dt + V (s +∆s, x(s +∆s))

}
≈ inf

θ
{L(s, z,θ(s))∆s + V (s +∆s, x(s +∆s))}

≈ inf
θ
{L(s, z,θ(s))∆s + V (s, x(s))

+ ∂sV (s, z)∆s + [∇zV (s, z)]⊤f (s, z,θ(s))∆s}
ẋ(t) = f (t, x(t),θ(t)), t ∈ [s, τ ], x(s) = z

(31)
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Proof from SOC
Optimality Condition of SBP

Proof.

Similarly, we can derive the HJB equation for SOC as:

V (Xs , s) = inf
u
E
{∫ s+∆s

s
w(Xt , u, t)dt + V (Xs+∆s , s +∆s)

}
≈ inf

u
E {w(Xs , u, s)∆s + V (Xs+∆s , s +∆s)}

≈ inf
u
E{w(Xt , u, t)∆s + V (Xs , s)

+ ∂sV (z, s)∆s +LV (z, s)∆s +∇Vs(z) ·
√
ε∆dWs}

dXt = u(Xt , t)dt +
√
εdWt , t ∈ [s, τ ], Xs = z

(31)
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Proof from SOC
Optimality Condition of SBP

Proof.

Then, the HJB equation for this problem is

∂V (x , t)

∂t
+min

u∈U

{
LV (x , t) +

∥u(x , t)∥2

2ε

}
= 0,V (x ,T ) = 0. (31)

Then, the optimal ut = −εVt , substitute this optimal control, we can complete the
proof.
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Optimality Condition (Lagrange Function)
Optimality Condition of SBP

Theorem (Optimality Condition of SBP (Lagrange Function))

In the following, we give the optimality condition for SBP.

∂λ

∂t
+

1

2
∥∇λ∥2 + ε

2
∆λ = 0

∂µt

∂t
+∇ · (vtµt)−

ε

2
∆µt = 0

(32)

where the optimal policy (control)

v∗t = ∇λ(Xt) (33)
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Proof from Lagrange Function
Optimality Condition of SBP

Proof.

We can also prove the same results from the Lagrange function. Consider the
unconstrained minimization of the Lagrangian

L(µ, v) =

∫ 1

0

∫
Rn

[
1

2
∥v(t, x)∥2µt(x) + λ(t, x)

(
∂µt

∂t
+∇ · (vµt)−

ε

2
∆µt

)]
dx dt

(34)
where µt satisfies the boundary condition. Then, integrating by parts, assuming that
limits for ∥x∥ → ∞ are zero, we get
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Proof from Lagrange Function
Optimality Condition of SBP

Proof.

where µt satisfies the boundary condition. Then, integrating by parts, assuming that
limits for ∥x∥ → ∞ are zero, we get∫ 1

0

∫
Rn

[
1

2
∥v(t, x)∥2 −

(
∂λ

∂t
+∇λ · ν +

ε

2
∆λ

)]
µt(x)dx dt

+

∫ 1

0

∫
Rn

∂[λ(t, x)µt(x)]

∂t
dx dt +

∫ 1

0

∫
Rn

∂[λ(t, x)ν(t, x)µt(x)]

∂x
dx dt

− ε

2

∫ 1

0

∫
Rn

∂[λ(t, x)∂µt(x)]

∂x
dx dt +

ε

2

∫ 1

0

∫
Rn

∂[λ(t, x)µt(x)]

∂x
dx dt

(34)
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Proof from Lagrange Function
Optimality Condition of SBP

Proof.

The last four integrals are constant for a fixed λ and can therefore be discarded. Then,
we consider doing this in two stages, starting from minimization with respect to ν for a
fixed flow of probability densities µt . Pointwise minimization of the integral at each
time gives that

ν∗µt
(t, x) = ∇λ(t, x) (34)

Then, substituting this expression for the optimal control, we obtain

J(µ) = −
∫
Rn

∫ 1

0

[
∂λ

∂t
+

1

2
∥∇λ∥2 + ε

2
∆λ

]
µt(x)dt dx (35)

In view of this, if λ satisfies the Hamilton-Jacobi equation ∂λ
∂t + 1

2∥∇λ∥2 + ε
2∆λ = 0,

then J(µ) is identically zero.
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Schrödinger System
Optimality Condition of SBP

Theorem (Schrödinger System){
∂Φ
∂t = − ε

2∆Φ
∂Φ̂
∂t = ε

2∆Φ̂
s.t. Φ(0, ·)Φ̂(0, ·) = µ0, Φ(1, ·)Φ̂(1, ·) = µ1. (36)
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Proof for Schrödinger System
Optimality Condition of SBP

Proof.

By applying the Hopf-Cole transform (λ, µt) → (Φ, ϕ̂),

Φ = exp

(
λ

ε

)
and Φ̂ = µt exp

(
−λ

ε

)
, (37)

1) For the first equation,

1

ε
exp

(
λ

ε

)
∂λ

∂t
= − 1

2ε
exp

(
λ

ε

)
∥∇λ∥2 − 1

2
exp

(
λ

ε

)
∆λ

∂λ

∂t
= −1

2
∥∇λ∥2 − ε

2
∆λ

(38)
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Proof for Schrödinger System
Optimality Condition of SBP

Proof.

2) For the second equation,

∂µt

∂t
exp

(
−λ

ε

)
+ µt exp

(
−λ

ε

)(
−1

ε

)
∂λ

∂t

=
ε

2

∂

∂t

[
∇µt exp

(
−λ

ε

)
+ µt exp

(
−λ

ε

)(
−1

ε

)
∇λ

]
=

ε

2
∆µt exp

(
−λ

ε

)
+

ε

2
∇µt exp

(
−λ

ε

)(
−1

ε

)
∇λ

+
ε

2
∇µt exp

(
−λ

ε

)(
−1

ε

)
∇λ+

ε

2
µt exp

(
−λ

ε

)(
1

ε2

)
∥∇λ∥2

+
ε

2
µt exp

(
−λ

ε

)(
−1

ε

)
∆λ

(37)
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Proof for Schrödinger System
Optimality Condition of SBP

Proof.

∂µt

∂t
+ µt

(
−1

ε

)
∂λ

∂t
=

ε

2
∆µt +

ε

2
∇µt

(
−1

ε

)
∇λ+

ε

2
∇µt

(
−1

ε

)
∇λ

+
ε

2
µt

(
1

ε2

)
∥∇λ∥2 + ε

2
µt

(
−1

ε

)
∆λ

(37)

substitute the equation ∂λ
∂t + 1

2∥∇λ∥2 + ε
2∆λ = 0 into the above equation
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Proof for Schrödinger System
Optimality Condition of SBP

Proof.

∂µt

∂t
+ µt

(
−1

ε

)
∂λ

∂t
=

∂µt

∂t
+

µt

ε

(
1

2
∥∇λ∥2 + ε

2
∆λ

)
=

ε

2
∆µt +

ε

2
∇µt

(
−1

ε

)
∇λ+

ε

2
∇µt

(
−1

ε

)
∇λ

+
ε

2
µt

(
1

ε2

)
∥∇λ∥2 + ε

2
µt

(
−1

ε

)
∆λ

∂µt

∂t
=

ε

2
∆µt −∇µt∇λ− µt∆λ

(37)

which completes the proof.
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Proof for Schrödinger System
Optimality Condition of SBP

Proof.

3) The Lagrangian function of static SBP has the form

L(P01, λ, µ) =

∫ ∫
log

(
P01(x , y)

W ε
01(x , y)

)
P01(x , y) dx dy

+

∫
λ(x)

[∫
P01(x , y) dy − ρ0(x)

]
dx +

∫
µ(y)

[∫
P01(x , y) dx − ρ1(y)

]
dy

(37)
Setting the first variation equal to zero, we get the sufficient optimality condition

1 + log P∗
01(x , y)− logq0(x)− logp(0, x , 1, y) + λ(x) + µ(y) = 0 (38)

where we have used the expression W ε
01(x , y) = q0(x) p(0, x , 1, y).
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Proof for Schrödinger System
Optimality Condition of SBP

Proof.

Then, we get

P∗
01(x , y)

p(0, x , 1, y)
= exp

[
log ρW0 (x)− 1− λ(x)− µ(y)

]
= exp

[
log ρW0 (x)− 1− λ(x)

]
exp [−µ(y)]

= Φ̂(x) + Φ(y)

(37)

Then, the optimal P∗
01(x , y) has then the form

P∗
01(x , y) = Φ̂(x) p(0, x , 1, y) Φ(y) (38)
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Proof for Schrödinger System
Optimality Condition of SBP

Proof.

with Φ and Φ̂ satisfying

Φ̂(x)

∫
p(0, x , 1, y) Φ(y) dy = ρ0(x), Φ(y)

∫
p(0, x , 1, y) Φ̂(x) dx = ρ1(y) (37)

Let Φ̂(0, x) = Φ̂(x),Φ(1, y) = Φ(y) and

Φ̂(1, y) =

∫
p(0, x , 1, y) Φ̂(0, x) dx , Φ(0, x) =

∫
p(0, x , 1, y) Φ(1, y) dy (38)

with the boundary conditions

Φ(0, x) · Φ̂(0, x) = ρ0(x), Φ(1, y) · Φ̂(1, y) = ρ1(y). (39)
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SBP with General Prior
SBP with General Prior

Definition (Dynamic SBP)

PSBP := arg min
P∈D(ρ0,ρ1)

D(P||P̃) (40)

where P̂ represents the prior path measure induced by the stochastic differential
equation dXt = f (t,Xt)dt +

√
εdWt and

D(P||P̃) = EP

{
log

dP

dP̃

}
, ifP ≪ P̃ (41)

denotes the relative entropy (KL divergence), and

D(ρ0, ρ1) = {P ∈ C([0, 1],Rn)|Pt=0 = ρ0,Pt=1 = ρ1} (42)

denotes a path measure has marginal measure ρ0 and ρ1 at time t = 0 and t = 1,
respectively.
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SBP with General Prior
SBP with General Prior

Corollary (SOC-SBP)

inf
v
E
{∫ 1

0

1

2ε
∥v(t,Xt)∥2 dt

}
s.t. dXt = [f (t,Xt) + v(t,Xt)]dt +

√
εdWt , X0 ∼ µ0, X1 ∼ µ1,

(43)
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SBP with General Prior
SBP with General Prior

Corollary (DynamicEOT-SBP)

Let
ṽ(t, x) = f (t, x)− ε

2
∇logµ̃t(t, x) (44)

be the velocity of the prior process. We can also present a dynamic version for entropic
optimal transport SBP as

inf
(µt ,v)

∫ 1

0

∫
Rn

[
1

2ε
∥v(t, x)− ṽ(t, x)∥2 + ε

8
∥∇log

µ(t, x)

µ̃(t, x)
∥2
]
dµt(x)dt,

s.t.
∂µt

∂t
+∇ · (vµt) = 0, µt=0 = µ0, µt=1 = µ1,

(45)
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Optimality Criteria
SBP with General Prior

Theorem (Optimality Criteria)

let us consider a general Markovian prior measure P̃ which induced by a forward SDE
dXt = f (t,Xt) dt +

√
εdWt . Then the corresponding optimality criteria defines as{

∂Φ
∂t = − ε

2∆Φ− f · ∇Φ
∂Φ̂
∂t = ε

2∆Φ̂−∇ · (f Φ̂)
s.t. Φ(0, ·)Φ̂(0, ·) = µ0, Φ(1, ·)Φ̂(1, ·) = µ1. (46)
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