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Stochastic Optimal Control

Definition (Stochastic Optimal Control)

Let (0, F, (Ft)t>0,P) be a fixed filtered probability space on which is defined a
Brownian motion W = (W;)¢>0. We consider the control-affine problem

T
min]E[/ w(X{, ue, t)dt + g(XF)],
ueld 0

where dX = (b(X", t) + o(t)u(XF, t)) dt + VAo (t)dW;, Xy~ po.

(1)

and where X! € R9 is the state, u : R? x [0, T] is the feedback control and belongs to
the set of admissible controls I/, w is the state cost, g : R — R is the terminal cost,
b:RY x [0, T] — RY is the base drift, and o : [0, T] — R*? is the invertible diffusion
coefficient and A € (0, +00) is the noise level.
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Value Function

Stochastic Optimal Control

Definition (Cost Functional and Value Function)

The cost functional for the control u, point x and time t is defined as

J(u;x, t) = E[ftT w(X, ue, t) dt + g(X4)|X# = x]. That is, the cost functional is
the expected value of the control objective restricted to the times [t, T] with the initial
value x at time t. The value function or optimal cost-to-go at a point x and time t is
defined as the minimum value of the cost functional across all possible controls:

V(x,t) = inf J(u; x, t). (2)
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HJB Optimality Condition

Stochastic Optimal Control

Definition (HJB Optimality Condition for SOC)

If we define the infinitesimal generator

L:=330 1 (007)j(t)00x + iy bi(x, )0y + Sy 0i(t)ui(x, 1)y, the value
function solves the following Hamilton-Jacobi-Bellman (HJB) partial differential
equation:

oV(x,t) . _ _
ot + min {LV(x,t) +w(x,u,t)} =0,V(x, T) = g(x). (3)
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Proof of HJB Optimality Condition

Stochastic Optimal Control

Proof.
Recall the 1t6 Lemma for SDE dX} = (b(X{, t) + o(t)u(X, t)) dt + VAo (t)dW,:

V(XU ) . OV(XE¢)
or Ot o
av,

182 V(Xtua t) (qu)2
t

V(XY 1) = S “

dx +

where the LV/(x, t) is the generator which defines as

LV (x,t) = VVi(x) - (b(X{, t) + o(t)u(X{, t)) + %Trace [or(t)cr(t)TV2 Vt(x)] (5)
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Proof of HJB Optimality Condition

Stochastic Optimal Control

Proof.
Recall the proof of HJB equation in the optimal control section. The key step is

s+As
V(s.2) = inf { / L(t,x(t), 0(t))dt + V(s + As,x(s + As))}
~ igf {L(s,2,0(s))As + V(s + As,x(s + As))}
A ir(}f{L(s,z, 0(s))As + V(s,x(s)) (4)

+ 0sV(s,2)As + [V, V(s,2)]" f(s,z,0(s))As}
x(t) = f(t,x(t),0(t)), tels, 7], x(s)=1z
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Proof of HJB Optimality Condition

Stochastic Optimal Control

Proof.
Similarly, we can derive the HJB equation for SOC as:

s+As
V(XZ,s) =infE {/ w(X{, u, t)dt + V(X as, 5+ As)}
u S
~infE{w(X!, u,s)As + V(X2 ps, s + As)}
~ inf E{w(X/, u, t)As + V(XZ,s) (4)

+ 05V(z,5)As + LV(z,5)As + VVi(2) - VAo (s)AdW,}
AXY = (b(XE, t) + o(t)u(XY, ) dt + VAo (t)dWs, tels,7], X'=z2
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Quadratic-regularized State Cost SOC

Definition (Quadratic-regularized State Cost)

Let (0, F, (Ft)t>0,P) be a fixed filtered probability space on which is defined a
Brownian motion W = (W;)¢>0. We consider the control-affine problem

. T 1 u 2 (XY u
minE[ [ (Glu0e 1P + X 0) de + £(X3)).

where dX = (b(X", t) + o(t)u(XF, t)) dt + VAo (t)dW;, Xy~ po.

(5)

and where X! € R9 is the state, u : R? x [0, T] is the feedback control and belongs to
the set of admissible controls I/, f : RY x [0, T] — R is the state cost, g : RY — R is
the terminal cost, b: R? x [0, T] — RY is the base drift, and o : [0, T] — R9*9 is the
invertible diffusion coefficient and A € (0,400) is the noise level.
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HJB Optimality Condition

Quadratic-regularized State Cost SOC

Definition (HJB equation fot Quadratic-regularized State Cost)
Since the unique optimal control is given in terms of the value function as
u*(x,t) = —o(t) 'V V(x, t). If we define the infinitesimal generator
L= %Zf’le(aaT),-j(t)Bxi&g + Z}j:l bi(x, t)Ox,, the value function solves the
following Hamilton-Jacobi-Bellman (HJB) partial differential equation:
~NieT 2 _
(at+L)V(X7 t) 2“(0 VV)(X, t)“ +f(X7 t)_07 (6)

V(x, T) = g(x).
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Path Integral Control

Quadratic-regularized State Cost SOC

Lemma (Path-integral representation of the optimal control)

u*(x,t)=Xo(t) " VxlogE[exp ( — A7 / ' f(Xs,s)ds — AT (X7)) | Xe = x]
o (7)
V(x,t) = —XlogE[exp (— )\_1/ f(Xs,s)ds — /\_1g(X7-)) |Xt = x|,

t

where X; is generated by the uncontrolled process. The optimal control and the value
function are related to each other by u*(x,t) = —o(t)'VV(x, t).
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Proof of Path-integral Control
Quadratic-regularized State Cost SOC

Proof. (Path-integral Control).
Let us recall the HJB optimality condition

0+ D)V 1)~ 0TIV DI + F(x, 1) =0,

A d d
L=5 > (007)(1)0dy + Y bilx, 1)y, (8)
ij=1 i=1
V(x, T) = g(x).

and perform the Cole-Hopf transform V(x,t) = —AIn W(x, t).
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Proof of Path-integral Control
Quadratic-regularized State Cost SOC

Proof. (Path-integral Control).
and perform the Cole-Hopf transform V(x,t) = —AIn W(x, t).

OV + LV A3 o Tvw A oTvw
AT )+ T IR = S Ty G B2 ) =0
d
A
L=2 3 (00 )5(t) 0 + Z bi(x, )0y, (8)
ij=1 i=1

V(x, T) = exp(—A""g(x)).
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Proof of Path-integral Control
Quadratic-regularized State Cost SOC

Proof. (Path-integral Control).

After some canceling processes, we have

OrV(x, t) + LW (x, t) — _1\Il(x t)f(x,t) =0

=5 Z(aa )ii(£)0 0 + Zb (x, t)dy; (8)

ij=1
Y(x, T) = exp(—A""g(x)).

Then, let us recall the Feynman-Kac formulation:

{8u(x ,t) +N(X t) u(x t) + % 2((X ;))Lg%&—ﬂ)— q(X7 t)u(x, t) = _g(X: t) (9)

with its conclusion 12/16



Proof of Path-integral Control
Quadratic-regularized State Cost SOC

Proof. (Path-integral Control).
T
u(x’ t) =FE |:f(£-,—)e_ ftT q(8.,€6)d0 + / g(s, é‘s)e_ ftT Q(9,§0)d0d5|£t _ X:| (8)
t
Then, substitute it into the original formula,
-
V(x,t)=E [exp(—)\_lg(x)) exp(—A_l/ f(s,Xs)ds)|Xe = x] (9)
t

O
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Forward and Backward SDEs

Quadratic-regularized State Cost SOC

Consider the pair of SDEs

dX; = b(Xe, t)dt + VAo (t)dB;,  Xo ~ po,

dYe = (—F(Xe.t) + %||Zt||2)dt +VNZ:,dBy), Y7 =g(X7). (0

where Y : Q x [0, T] = R and Z: Q x [0, T] — R are progressively measurable
random processes. It turns out that Y; and Z; defined as Y: := V/(X;, t) and
Z; = o(t)TVV(Xs, t) = —u*(Xe, t) satisfy the HJB optimality condition.
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Verification Theorem

Quadratic-regularized State Cost SOC

Definition (Verification Theorem fot Quadratic-regularized State Cost SOC)

The verification theorem states that if a function V solves the HJB equation above
and has certain regularity conditions, then V is the value function (2) of the problem
(5). An implication of the verification theorem is that for every u € U,

1 T T 2 u u
V(x, t)+E[§/ loTVV £ u|P(XE,s)ds | XE = x] = J(u.x, ). (11)

t

Equation (11) can be deduced by integrating the HJB equation (6) over [t, T], and
taking the conditional expectation with respect to X} = x.
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Proof of Verification Theorem
Quadratic-regularized State Cost SOC

Proof. (Verification Theorem).

By Itd Lemma, we have that

V(Xy, T) = V(X! 1) = / (0 V(XS,5) + (b(X{, 5) + (XS, s)u(X{,5), V(X 5))
)\ d
+5 Z 5)0x 0, V(XZ,s)) ds + S,
(12)
where S} = \/XftT VV(XY s)To(XY, s)dBs. Note that by (6),
as V(Xsu7 5) + <b(Xsu> 5) + U(Xsuv S)U(Xsuv 5)7 \Y V(Xsua 5)>
d
A . ” (13)
+ 2 Z (JUT)U(XS ’s)axiaxj V(Xs o)
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Proof of Verification Theorem
Quadratic-regularized State Cost SOC

Proof. (Verification Theorem).
1

= ST VV)XS,9) 1P = F(XS'5) + (o(X )u(X'5), VV (XS, 5)) 12)
1 u u 1 u u
= §||(UTVV)(X5 ,S) + u(Xs 75)”2 - E”u(Xs 75)”2 - f(Xs ,5),
and this implies that
Tl 2
g0~ VXt ) = [ (GIeTIVIOE) + (X5 .
t
1
E”u(Xsua S)||2 - f(Xsu7 S)) ds + Stfl
Since E[S{ | X} = x] = 0, rearranging and taking the conditional expectation with
respect to X/ yields the final result. O
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